IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v141y2019icp847-857.html
   My bibliography  Save this article

Co-immobilization of Rhizomucor miehei lipase and Candida antarctica lipase B and optimization of biocatalytic biodiesel production from palm oil using response surface methodology

Author

Listed:
  • Shahedi, Mansour
  • Yousefi, Maryam
  • Habibi, Zohreh
  • Mohammadi, Mehdi
  • As'habi, Mohammad Ali

Abstract

Lipases from Candida antarctica B (nonspecific lipase) and Rhizomucor miehei (1,3-specific lipase) were simultaneously immobilized on epoxy functionalized silica gel under mild conditions. The results showed rapid and simple immobilization of 4–15 mg of CALB:RML (different ratios 4:1, 2:1, 1.5:1, 1:1) on 1 g of support after 6 h. The thermal stability of derivatives and also their stability in methanol were greatly improved compared to the single immobilized enzyme. All the derivatives were also used to catalyze the transesterification of palm oil with methanol to produce fatty acid methyl esters (FAMEs). Response surface methodology (RSM) and a central composite rotatable design (CCRD) was used to study the effects of five factors, reaction temperature, methanol/oil ratio, reaction time, t-butanol concentration and CALB:RML ratio on the fatty acid methyl esters (FAME) yield. A quadratic polynomial equation was obtained for methanolysis reaction by multiple regression analysis. The optimum combinations for the reaction were CALB:RML ratio (2.5:1), t-butanol to oil (39.9 wt%), temperature (35.6 °C), methanol:oil ratio (5.9), reaction time 33.5 h. FAME yield of 78.3.5%, which was very close to the predicted value of 75.2%, was obtained. Verification experiment confirmed the validity of the predicted model.

Suggested Citation

  • Shahedi, Mansour & Yousefi, Maryam & Habibi, Zohreh & Mohammadi, Mehdi & As'habi, Mohammad Ali, 2019. "Co-immobilization of Rhizomucor miehei lipase and Candida antarctica lipase B and optimization of biocatalytic biodiesel production from palm oil using response surface methodology," Renewable Energy, Elsevier, vol. 141(C), pages 847-857.
  • Handle: RePEc:eee:renene:v:141:y:2019:i:c:p:847-857
    DOI: 10.1016/j.renene.2019.04.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119305269
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.04.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Babaki, Mohadese & Yousefi, Maryam & Habibi, Zohreh & Mohammadi, Mehdi, 2017. "Process optimization for biodiesel production from waste cooking oil using multi-enzyme systems through response surface methodology," Renewable Energy, Elsevier, vol. 105(C), pages 465-472.
    2. Babaki, Mohadese & Yousefi, Maryam & Habibi, Zohreh & Mohammadi, Mehdi & Yousefi, Parisa & Mohammadi, Javad & Brask, Jesper, 2016. "Enzymatic production of biodiesel using lipases immobilized on silica nanoparticles as highly reusable biocatalysts: effect of water, t-butanol and blue silica gel contents," Renewable Energy, Elsevier, vol. 91(C), pages 196-206.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pascoal, C.V.P. & Oliveira, A.L.L. & Figueiredo, D.D. & Assunção, J.C.C., 2020. "Optimization and kinetic study of ultrasonic-mediated in situ transesterification for biodiesel production from the almonds of Syagrus cearensis," Renewable Energy, Elsevier, vol. 147(P1), pages 1815-1824.
    2. Behdad Shadidi & Gholamhassan Najafi & Mohammad Ali Zolfigol, 2022. "A Review of the Existing Potentials in Biodiesel Production in Iran," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    3. Zhong, Le & Jiao, Xiaobo & Hu, Hongtong & Shen, Xuejian & Zhao, Juan & Feng, Yuxiao & Li, Conghai & Du, Yingjie & Cui, Jiandong & Jia, Shiru, 2021. "Activated magnetic lipase-inorganic hybrid nanoflowers: A highly active and recyclable nanobiocatalyst for biodiesel production," Renewable Energy, Elsevier, vol. 171(C), pages 825-832.
    4. Gourich, Wail & Chan, Eng-Seng & Ng, Wei Zhe & Obon, Aaron Anthony & Maran, Kireshwen & Ong, Yi Hui & Lee, Chin Loong & Tan, Jully & Song, Cher Pin, 2022. "Life cycle benefits of enzymatic biodiesel co-produced in palm oil mills from sludge palm oil as renewable fuel for rural electrification," Applied Energy, Elsevier, vol. 325(C).
    5. Monteiro, Rodolpho R.C. & Arana-Peña, Sara & da Rocha, Thays N. & Miranda, Letícia P. & Berenguer-Murcia, Ángel & Tardioli, Paulo W. & dos Santos, José C.S. & Fernandez-Lafuente, Roberto, 2021. "Liquid lipase preparations designed for industrial production of biodiesel. Is it really an optimal solution?," Renewable Energy, Elsevier, vol. 164(C), pages 1566-1587.
    6. Wancura, João H.C. & Brondani, Michel & dos Santos, Maicon S.N. & Oro, Carolina E.D. & Wancura, Guilherme C. & Tres, Marcus V. & Oliveira, J. Vladimir, 2023. "Demystifying the enzymatic biodiesel: How lipases are contributing to its technological advances," Renewable Energy, Elsevier, vol. 216(C).
    7. Kumar, Dilip & Das, Tapas & Giri, Balendu Shekher & Verma, Bhawna, 2020. "Preparation and characterization of novel hybrid bio-support material immobilized from Pseudomonas cepacia lipase and its application to enhance biodiesel production," Renewable Energy, Elsevier, vol. 147(P1), pages 11-24.
    8. Binhayeeding, Narisa & Klomklao, Sappasith & Prasertsan, Poonsuk & Sangkharak, Kanokphorn, 2020. "Improvement of biodiesel production using waste cooking oil and applying single and mixed immobilised lipases on polyhydroxyalkanoate," Renewable Energy, Elsevier, vol. 162(C), pages 1819-1827.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Dilip & Das, Tapas & Giri, Balendu Shekher & Verma, Bhawna, 2020. "Preparation and characterization of novel hybrid bio-support material immobilized from Pseudomonas cepacia lipase and its application to enhance biodiesel production," Renewable Energy, Elsevier, vol. 147(P1), pages 11-24.
    2. Monteiro, Rodolpho R.C. & Arana-Peña, Sara & da Rocha, Thays N. & Miranda, Letícia P. & Berenguer-Murcia, Ángel & Tardioli, Paulo W. & dos Santos, José C.S. & Fernandez-Lafuente, Roberto, 2021. "Liquid lipase preparations designed for industrial production of biodiesel. Is it really an optimal solution?," Renewable Energy, Elsevier, vol. 164(C), pages 1566-1587.
    3. Long, Feng & Liu, Weiguo & Jiang, Xia & Zhai, Qiaolong & Cao, Xincheng & Jiang, Jianchun & Xu, Junming, 2021. "State-of-the-art technologies for biofuel production from triglycerides: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    4. Esmaeilnejad-Ahranjani, Parvaneh & Kazemeini, Mohammad & Singh, Gurvinder & Arpanaei, Ayyoob, 2018. "Effects of physicochemical characteristics of magnetically recoverable biocatalysts upon fatty acid methyl esters synthesis from oils," Renewable Energy, Elsevier, vol. 116(PA), pages 613-622.
    5. Xie, Wenlei & Huang, Mengyun, 2020. "Fabrication of immobilized Candida rugosa lipase on magnetic Fe3O4-poly(glycidyl methacrylate-co-methacrylic acid) composite as an efficient and recyclable biocatalyst for enzymatic production of biod," Renewable Energy, Elsevier, vol. 158(C), pages 474-486.
    6. Badoei-dalfard, Arastoo & Malekabadi, Saeid & Karami, Zahra & Sargazi, Ghasem, 2019. "Magnetic cross-linked enzyme aggregates of Km12 lipase: A stable nanobiocatalyst for biodiesel synthesis from waste cooking oil," Renewable Energy, Elsevier, vol. 141(C), pages 874-882.
    7. Mehrasbi, Mohammad Reza & Mohammadi, Javad & Peyda, Mazyar & Mohammadi, Mehdi, 2017. "Covalent immobilization of Candida antarctica lipase on core-shell magnetic nanoparticles for production of biodiesel from waste cooking oil," Renewable Energy, Elsevier, vol. 101(C), pages 593-602.
    8. Babaki, Mohadese & Yousefi, Maryam & Habibi, Zohreh & Mohammadi, Mehdi, 2017. "Process optimization for biodiesel production from waste cooking oil using multi-enzyme systems through response surface methodology," Renewable Energy, Elsevier, vol. 105(C), pages 465-472.
    9. Renas Hasan Saeed Saeed & Youssef Kassem & Hüseyin Çamur, 2019. "Effect of Biodiesel Mixture Derived from Waste Frying-Corn, Frying-Canola-Corn and Canola-Corn Cooking Oils with Various ‎Ages on Physicochemical Properties," Energies, MDPI, vol. 12(19), pages 1-26, September.
    10. Juan García-Cuadrado & Andrea Conserva & Juan Aranda & David Zambrana-Vasquez & Tatiana García-Armingol & Gema Millán, 2022. "Response Surface Method to Calculate Energy Savings Associated with Thermal Comfort Improvement in Buildings," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
    11. Behdad Shadidi & Gholamhassan Najafi & Mohammad Ali Zolfigol, 2022. "A Review of the Existing Potentials in Biodiesel Production in Iran," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    12. Samuel Santos & Jaime Puna & João Gomes, 2020. "A Review on Bio-Based Catalysts (Immobilized Enzymes) Used for Biodiesel Production," Energies, MDPI, vol. 13(11), pages 1-19, June.
    13. Tan, Yie Hua & Abdullah, Mohammad Omar & Nolasco-Hipolito, Cirilo & Ahmad Zauzi, Nur Syuhada, 2017. "Application of RSM and Taguchi methods for optimizing the transesterification of waste cooking oil catalyzed by solid ostrich and chicken-eggshell derived CaO," Renewable Energy, Elsevier, vol. 114(PB), pages 437-447.
    14. Kamel Ariffin, Maryam Farhana & Idris, Ani, 2022. "Fe2O3/Chitosan coated superparamagnetic nanoparticles supporting lipase enzyme from Candida Antarctica for microwave assisted biodiesel production," Renewable Energy, Elsevier, vol. 185(C), pages 1362-1375.
    15. Mohadesi, Majid & Gouran, Ashkan & Dehghan Dehnavi, Amir, 2021. "Biodiesel production using low cost material as high effective catalyst in a microreactor," Energy, Elsevier, vol. 219(C).
    16. Cruz, Mariana & Pinho, Sílvia Cardinal & Mota, Ricardo & Almeida, Manuel Fonseca & Dias, Joana Maia, 2018. "Enzymatic esterification of acid oil from soapstocks obtained in vegetable oil refining: Effect of enzyme concentration," Renewable Energy, Elsevier, vol. 124(C), pages 165-171.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:141:y:2019:i:c:p:847-857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.