IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v86y2016icp392-398.html
   My bibliography  Save this article

Synthesis of fatty acid methyl esters via the transesterification of waste cooking oil by methanol with a barium-modified montmorillonite K10 catalyst

Author

Listed:
  • Olutoye, M.A.
  • Wong, S.W.
  • Chin, L.H.
  • Amani, H.
  • Asif, M.
  • Hameed, B.H.

Abstract

The transesterification of waste cooking oil (WCO) with methanol to produce fatty acid methyl esters (FAMEs) in the presence of barium-modified montmorillonite K10 (BMK10) catalyst was investigated in a batch reactor. The influence of the reaction parameters on the yield of FAME was investigated. The highest value of 83.38% was obtained with 3.5 wt% catalyst loading at 150 °C with a methanol: oil molar ratio of 12:1 during a reaction time of 5 h. BMK10 is a promising low-cost catalyst for the transesterification of WCO to produce FAME.

Suggested Citation

  • Olutoye, M.A. & Wong, S.W. & Chin, L.H. & Amani, H. & Asif, M. & Hameed, B.H., 2016. "Synthesis of fatty acid methyl esters via the transesterification of waste cooking oil by methanol with a barium-modified montmorillonite K10 catalyst," Renewable Energy, Elsevier, vol. 86(C), pages 392-398.
  • Handle: RePEc:eee:renene:v:86:y:2016:i:c:p:392-398
    DOI: 10.1016/j.renene.2015.08.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115302160
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.08.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karabas, Hülya, 2013. "Biodiesel production from crude acorn (Quercus frainetto L.) kernel oil: An optimisation process using the Taguchi method," Renewable Energy, Elsevier, vol. 53(C), pages 384-388.
    2. Suryaputra, Wijaya & Winata, Indra & Indraswati, Nani & Ismadji, Suryadi, 2013. "Waste capiz (Amusium cristatum) shell as a new heterogeneous catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 50(C), pages 795-799.
    3. Amani, H. & Ahmad, Z. & Hameed, B.H., 2014. "Synthesis of fatty acid methyl esters via the methanolysis of palm oil over Ca3.5xZr0.5yAlxO3 mixed oxide catalyst," Renewable Energy, Elsevier, vol. 66(C), pages 680-685.
    4. Meher, L.C. & Vidya Sagar, D. & Naik, S.N., 2006. "Technical aspects of biodiesel production by transesterification--a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(3), pages 248-268, June.
    5. Guo, Pingmei & Zheng, Chang & Zheng, Mingming & Huang, Fenghong & Li, Wenlin & Huang, Qingde, 2013. "Solid base catalysts for production of fatty acid methyl esters," Renewable Energy, Elsevier, vol. 53(C), pages 377-383.
    6. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2012. "The effects of water on biodiesel production and refining technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3456-3470.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Ameen & Mushtaq Ahmad & Muhammad Zafar & Mamoona Munir & Muhammad Mujtaba Mujtaba & Shazia Sultana & Rozina . & Samah Elsayed El-Khatib & Manzoore Elahi M. Soudagar & M. A. Kalam, 2022. "Prospects of Catalysis for Process Sustainability of Eco-Green Biodiesel Synthesis via Transesterification: A State-Of-The-Art Review," Sustainability, MDPI, vol. 14(12), pages 1-38, June.
    2. Altaf, Faizah & Batool, Rida & Gill, Rohama & Rehman, Zohaib Ur & Majeed, Hammad & Ahmad, Adnan & Shafiq, Muhammad & Dastan, Davoud & Abbas, Ghazanfar & Jacob, Karl, 2021. "Synthesis and electrochemical investigations of ABPBI grafted montmorillonite based polymer electrolyte membranes for PEMFC applications," Renewable Energy, Elsevier, vol. 164(C), pages 709-728.
    3. Alsharifi, Mariam & Znad, Hussein & Hena, Sufia & Ang, Ming, 2017. "Biodiesel production from canola oil using novel Li/TiO2 as a heterogeneous catalyst prepared via impregnation method," Renewable Energy, Elsevier, vol. 114(PB), pages 1077-1089.
    4. Yahya, Syahirah & Muhamad Wahab, Syamsul Kamar & Harun, Farah Wahida, 2020. "Optimization of biodiesel production from waste cooking oil using Fe-Montmorillonite K10 by response surface methodology," Renewable Energy, Elsevier, vol. 157(C), pages 164-172.
    5. Yusuff, Adeyinka S. & Bhonsle, Aman K. & Bangwal, Dinesh P. & Atray, Neeraj, 2021. "Development of a barium-modified zeolite catalyst for biodiesel production from waste frying oil: Process optimization by design of experiment," Renewable Energy, Elsevier, vol. 177(C), pages 1253-1264.
    6. Munir, Mamoona & Ahmad, Mushtaq & Saeed, Muhammad & Waseem, Amir & Nizami, Abdul-Sattar & Sultana, Shazia & Zafar, Muhammad & Rehan, Mohammad & Srinivasan, Gokul Raghavendra & Ali, Arshid Mahmood & Al, 2021. "Biodiesel production from novel non-edible caper (Capparis spinosa L.) seeds oil employing Cu–Ni doped ZrO2 catalyst," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    7. Sulaiman, Nur Fatin & Lee, Siew Ling & Toemen, Susilawati & Bakar, Wan Azelee Wan Abu, 2020. "Physicochemical characteristics of Cu/Zn/γ-Al2O3 catalyst and its mechanistic study in transesterification for biodiesel production," Renewable Energy, Elsevier, vol. 156(C), pages 142-157.
    8. Munir, Mamoona & Ahmad, Mushtaq & Saeed, Muhammad & Waseem, Amir & Rehan, Mohammad & Nizami, Abdul-Sattar & Zafar, Muhammad & Arshad, Muhammad & Sultana, Shazia, 2019. "Sustainable production of bioenergy from novel non-edible seed oil (Prunus cerasoides) using bimetallic impregnated montmorillonite clay catalyst," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 321-332.
    9. Yusuff, Adeyinka Sikiru & Gbadamosi, Afeez Olayinka & Atray, Neeraj, 2022. "Development of a zeolite supported CaO derived from chicken eggshell as active base catalyst for used cooking oil biodiesel production," Renewable Energy, Elsevier, vol. 197(C), pages 1151-1162.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    2. Singh, Bhaskar & Guldhe, Abhishek & Rawat, Ismail & Bux, Faizal, 2014. "Towards a sustainable approach for development of biodiesel from plant and microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 216-245.
    3. Jakeria, M.R. & Fazal, M.A. & Haseeb, A.S.M.A., 2014. "Influence of different factors on the stability of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 154-163.
    4. Fereidooni, Leila & Tahvildari, Kambiz & Mehrpooya, Mehdi, 2018. "Trans-esterification of waste cooking oil with methanol by electrolysis process using KOH," Renewable Energy, Elsevier, vol. 116(PA), pages 183-193.
    5. Vadery, Vinu & Cherikkallinmel, Sudha Kochiyil & Ramakrishnan, Resmi M. & Sugunan, Sankaran & Narayanan, Binitha N., 2019. "Green production of biodiesel over waste borosilicate glass derived catalyst and the process up-gradation in pilot scale," Renewable Energy, Elsevier, vol. 141(C), pages 1042-1053.
    6. Chakraborty, Rajat & Gupta, Abhishek.K. & Chowdhury, Ratul, 2014. "Conversion of slaughterhouse and poultry farm animal fats and wastes to biodiesel: Parametric sensitivity and fuel quality assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 120-134.
    7. Siwina, Siraprapha & Leesing, Ratanaporn, 2021. "Bioconversion of durian (Durio zibethinus Murr.) peel hydrolysate into biodiesel by newly isolated oleaginous yeast Rhodotorula mucilaginosa KKUSY14," Renewable Energy, Elsevier, vol. 163(C), pages 237-245.
    8. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    9. Malhotra, Rashi & Ali, Amjad, 2019. "5-Na/ZnO doped mesoporous silica as reusable solid catalyst for biodiesel production via transesterification of virgin cottonseed oil," Renewable Energy, Elsevier, vol. 133(C), pages 606-619.
    10. Marco Castellini & Stefano Ubertini & Diego Barletta & Ilaria Baffo & Pietro Buzzini & Marco Barbanera, 2021. "Techno-Economic Analysis of Biodiesel Production from Microbial Oil Using Cardoon Stalks as Carbon Source," Energies, MDPI, vol. 14(5), pages 1-21, March.
    11. Ullah, Zahoor & Bustam, Mohamad Azmi & Man, Zakaria, 2015. "Biodiesel production from waste cooking oil by acidic ionic liquid as a catalyst," Renewable Energy, Elsevier, vol. 77(C), pages 521-526.
    12. Thamsiriroj, Thanasit & Murphy, Jerry D., 2011. "A critical review of the applicability of biodiesel and grass biomethane as biofuels to satisfy both biofuel targets and sustainability criteria," Applied Energy, Elsevier, vol. 88(4), pages 1008-1019, April.
    13. Mohammad Anwar & Mohammad G. Rasul & Nanjappa Ashwath & Md Mofijur Rahman, 2018. "Optimisation of Second-Generation Biodiesel Production from Australian Native Stone Fruit Oil Using Response Surface Method," Energies, MDPI, vol. 11(10), pages 1-18, September.
    14. Verma, Puneet & Sharma, M.P., 2016. "Review of process parameters for biodiesel production from different feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1063-1071.
    15. Lau, Pak-Chung & Kwong, Tsz-Lung & Yung, Ka-Fu, 2022. "Manganese glycerolate catalyzed simultaneous esterification and transesterification: The kinetic and mechanistic study, and application in biodiesel and bio-lubricants synthesis," Renewable Energy, Elsevier, vol. 189(C), pages 549-558.
    16. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    17. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu, 2020. "Experimental assessment on the regulated and unregulated emissions of DI diesel engine fuelled with Chlorella emersonii methyl ester (CEME)," Renewable Energy, Elsevier, vol. 151(C), pages 88-102.
    18. Lam, Man Kee & Tan, Kok Tat & Lee, Keat Teong & Mohamed, Abdul Rahman, 2009. "Malaysian palm oil: Surviving the food versus fuel dispute for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1456-1464, August.
    19. Abdullah, A.Z. & Salamatinia, B. & Mootabadi, H. & Bhatia, S., 2009. "Current status and policies on biodiesel industry in Malaysia as the world's leading producer of palm oil," Energy Policy, Elsevier, vol. 37(12), pages 5440-5448, December.
    20. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.

    More about this item

    Keywords

    Waste cooking oil; FAME; Transesterification; Montmorillonite K10; Catalyst;
    All these keywords.

    JEL classification:

    • K10 - Law and Economics - - Basic Areas of Law - - - General (Constitutional Law)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:86:y:2016:i:c:p:392-398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.