IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v83y2015icp837-849.html
   My bibliography  Save this article

Co-located wave-wind farms: Economic assessment as a function of layout

Author

Listed:
  • Astariz, S.
  • Perez-Collazo, C.
  • Abanades, J.
  • Iglesias, G.

Abstract

Marine energies have a significant potential as an alternative to fossil fuels. However, the current high cost of the technology or the intermittency of the resources are often cited as a barrier to their large-scale development. The combined harnessing of different ocean resources in the same area can contribute to overcoming these issues. This work deals, in particular, with co-located wind and wave farms. With a currently operational wind farm as a reference, different co-located layouts are proposed and their impact on the Levelised Cost of Energy (LCOE) is analysed. A third-generation spectral wave model (SWAN) and real wave climate data are used. First, the combined use of the resource is characterised – energy yield per unit area, smoothing of power output, average power output and its seasonal variability. Second, a number of co-located layouts and the baseline (wind only) farm are compared in economic terms. Finally, conclusions are drawn on the potential cost reductions in co-located farms. We find that the energy cost is reduced by more than 50% relative to stand-alone wave farms. These results confirm the interest of combining wave and wind energy through co-located farms for the purpose of enhancing the economic viability of wave energy.

Suggested Citation

  • Astariz, S. & Perez-Collazo, C. & Abanades, J. & Iglesias, G., 2015. "Co-located wave-wind farms: Economic assessment as a function of layout," Renewable Energy, Elsevier, vol. 83(C), pages 837-849.
  • Handle: RePEc:eee:renene:v:83:y:2015:i:c:p:837-849
    DOI: 10.1016/j.renene.2015.05.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115004073
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.05.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. López, I. & Pereiras, B. & Castro, F. & Iglesias, G., 2014. "Optimisation of turbine-induced damping for an OWC wave energy converter using a RANS–VOF numerical model," Applied Energy, Elsevier, vol. 127(C), pages 105-114.
    2. Iglesias, G. & Carballo, R., 2011. "Choosing the site for the first wave farm in a region: A case study in the Galician Southwest (Spain)," Energy, Elsevier, vol. 36(9), pages 5525-5531.
    3. Dalton, G.J. & Alcorn, R. & Lewis, T., 2012. "A 10 year installation program for wave energy in Ireland: A case study sensitivity analysis on financial returns," Renewable Energy, Elsevier, vol. 40(1), pages 80-89.
    4. Fusco, Francesco & Nolan, Gary & Ringwood, John V., 2010. "Variability reduction through optimal combination of wind/wave resources – An Irish case study," Energy, Elsevier, vol. 35(1), pages 314-325.
    5. Mariano Buccino & Davide Banfi & Diego Vicinanza & Mario Calabrese & Giuseppe Del Giudice & Armando Carravetta, 2012. "Non Breaking Wave Forces at the Front Face of Seawave Slotcone Generators," Energies, MDPI, vol. 5(11), pages 1-25, November.
    6. Vicinanza, D. & Contestabile, P. & Ferrante, V., 2013. "Wave energy potential in the north-west of Sardinia (Italy)," Renewable Energy, Elsevier, vol. 50(C), pages 506-521.
    7. Astariz, S. & Perez-Collazo, C. & Abanades, J. & Iglesias, G., 2015. "Towards the optimal design of a co-located wind-wave farm," Energy, Elsevier, vol. 84(C), pages 15-24.
    8. Caballero, F. & Sauma, E. & Yanine, F., 2013. "Business optimal design of a grid-connected hybrid PV (photovoltaic)-wind energy system without energy storage for an Easter Island's block," Energy, Elsevier, vol. 61(C), pages 248-261.
    9. Allan, Grant & Gilmartin, Michelle & McGregor, Peter & Swales, Kim, 2011. "Levelised costs of Wave and Tidal energy in the UK: Cost competitiveness and the importance of "banded" Renewables Obligation Certificates," Energy Policy, Elsevier, vol. 39(1), pages 23-39, January.
    10. Neill, Simon P. & Lewis, Matt J. & Hashemi, M. Reza & Slater, Emma & Lawrence, John & Spall, Steven A., 2014. "Inter-annual and inter-seasonal variability of the Orkney wave power resource," Applied Energy, Elsevier, vol. 132(C), pages 339-348.
    11. Smith, Helen C.M. & Pearce, Charles & Millar, Dean L., 2012. "Further analysis of change in nearshore wave climate due to an offshore wave farm: An enhanced case study for the Wave Hub site," Renewable Energy, Elsevier, vol. 40(1), pages 51-64.
    12. Stoutenburg, Eric D. & Jenkins, Nicholas & Jacobson, Mark Z., 2010. "Power output variations of co-located offshore wind turbines and wave energy converters in California," Renewable Energy, Elsevier, vol. 35(12), pages 2781-2791.
    13. Babarit, A. & Hals, J. & Muliawan, M.J. & Kurniawan, A. & Moan, T. & Krokstad, J., 2012. "Numerical benchmarking study of a selection of wave energy converters," Renewable Energy, Elsevier, vol. 41(C), pages 44-63.
    14. de Prada Gil, Mikel & Gomis-Bellmunt, Oriol & Sumper, Andreas, 2014. "Technical and economic assessment of offshore wind power plants based on variable frequency operation of clusters with a single power converter," Applied Energy, Elsevier, vol. 125(C), pages 218-229.
    15. Muliawan, Made Jaya & Karimirad, Madjid & Moan, Torgeir, 2013. "Dynamic response and power performance of a combined Spar-type floating wind turbine and coaxial floating wave energy converter," Renewable Energy, Elsevier, vol. 50(C), pages 47-57.
    16. Hirth, Lion, 2013. "The market value of variable renewables," Energy Economics, Elsevier, vol. 38(C), pages 218-236.
    17. Rusu, Eugen & Onea, Florin, 2013. "Evaluation of the wind and wave energy along the Caspian Sea," Energy, Elsevier, vol. 50(C), pages 1-14.
    18. Beels, Charlotte & Troch, Peter & Kofoed, Jens Peter & Frigaard, Peter & Vindahl Kringelum, Jon & Carsten Kromann, Peter & Heyman Donovan, Martin & De Rouck, Julien & De Backer, Griet, 2011. "A methodology for production and cost assessment of a farm of wave energy converters," Renewable Energy, Elsevier, vol. 36(12), pages 3402-3416.
    19. Guanche, R. & de Andrés, A.D. & Simal, P.D. & Vidal, C. & Losada, I.J., 2014. "Uncertainty analysis of wave energy farms financial indicators," Renewable Energy, Elsevier, vol. 68(C), pages 570-580.
    20. Veigas, M. & Ramos, V. & Iglesias, G., 2014. "A wave farm for an island: Detailed effects on the nearshore wave climate," Energy, Elsevier, vol. 69(C), pages 801-812.
    21. Martínez, E. & Sanz, F. & Pellegrini, S. & Jiménez, E. & Blanco, J., 2009. "Life cycle assessment of a multi-megawatt wind turbine," Renewable Energy, Elsevier, vol. 34(3), pages 667-673.
    22. Abanades, J. & Greaves, D. & Iglesias, G., 2015. "Coastal defence using wave farms: The role of farm-to-coast distance," Renewable Energy, Elsevier, vol. 75(C), pages 572-582.
    23. Gouveia, João Pedro & Dias, Luís & Martins, Inês & Seixas, Júlia, 2014. "Effects of renewables penetration on the security of Portuguese electricity supply," Applied Energy, Elsevier, vol. 123(C), pages 438-447.
    24. McKenna, R. & Gantenbein, S. & Fichtner, W., 2013. "Determination of cost–potential-curves for wind energy in the German federal state of Baden-Württemberg," Energy Policy, Elsevier, vol. 57(C), pages 194-203.
    25. Iglesias, G. & Carballo, R., 2011. "Wave resource in El Hierro—an island towards energy self-sufficiency," Renewable Energy, Elsevier, vol. 36(2), pages 689-698.
    26. Rusu, Eugen & Guedes Soares, C., 2013. "Coastal impact induced by a Pelamis wave farm operating in the Portuguese nearshore," Renewable Energy, Elsevier, vol. 58(C), pages 34-49.
    27. Tănase Zanopol, Andrei & Onea, Florin & Rusu, Eugen, 2014. "Coastal impact assessment of a generic wave farm operating in the Romanian nearshore," Energy, Elsevier, vol. 72(C), pages 652-670.
    28. Lund, H., 2006. "Large-scale integration of optimal combinations of PV, wind and wave power into the electricity supply," Renewable Energy, Elsevier, vol. 31(4), pages 503-515.
    29. Lenee-Bluhm, Pukha & Paasch, Robert & Özkan-Haller, H. Tuba, 2011. "Characterizing the wave energy resource of the US Pacific Northwest," Renewable Energy, Elsevier, vol. 36(8), pages 2106-2119.
    30. Lion Hirth, 2013. "The Market Value of Variable Renewables. The Effect of Solar and Wind Power Variability on their Relative Price," RSCAS Working Papers 2013/36, European University Institute.
    31. Blanco, María Isabel, 2009. "The economics of wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1372-1382, August.
    32. Dunnett, David & Wallace, James S., 2009. "Electricity generation from wave power in Canada," Renewable Energy, Elsevier, vol. 34(1), pages 179-195.
    33. Pérez-Collazo, C. & Greaves, D. & Iglesias, G., 2015. "A review of combined wave and offshore wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 141-153.
    34. O'Connor, M. & Lewis, T. & Dalton, G., 2013. "Operational expenditure costs for wave energy projects and impacts on financial returns," Renewable Energy, Elsevier, vol. 50(C), pages 1119-1131.
    35. Dicorato, M. & Forte, G. & Pisani, M. & Trovato, M., 2011. "Guidelines for assessment of investment cost for offshore wind generation," Renewable Energy, Elsevier, vol. 36(8), pages 2043-2051.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharay Astariz & Gregorio Iglesias, 2015. "Enhancing Wave Energy Competitiveness through Co-Located Wind and Wave Energy Farms. A Review on the Shadow Effect," Energies, MDPI, vol. 8(7), pages 1-23, July.
    2. Astariz, S. & Perez-Collazo, C. & Abanades, J. & Iglesias, G., 2015. "Towards the optimal design of a co-located wind-wave farm," Energy, Elsevier, vol. 84(C), pages 15-24.
    3. Astariz, S. & Iglesias, G., 2015. "The economics of wave energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 397-408.
    4. Astariz, S. & Iglesias, G., 2016. "Co-located wind and wave energy farms: Uniformly distributed arrays," Energy, Elsevier, vol. 113(C), pages 497-508.
    5. Astariz, S. & Iglesias, G., 2016. "Output power smoothing and reduced downtime period by combined wind and wave energy farms," Energy, Elsevier, vol. 97(C), pages 69-81.
    6. Astariz, S. & Iglesias, G., 2017. "The collocation feasibility index – A method for selecting sites for co-located wave and wind farms," Renewable Energy, Elsevier, vol. 103(C), pages 811-824.
    7. Pasquale Contestabile & Enrico Di Lauro & Paolo Galli & Cesare Corselli & Diego Vicinanza, 2017. "Offshore Wind and Wave Energy Assessment around Malè and Magoodhoo Island (Maldives)," Sustainability, MDPI, vol. 9(4), pages 1-24, April.
    8. Ophelie Choupin & Michael Henriksen & Amir Etemad-Shahidi & Rodger Tomlinson, 2021. "Breaking-Down and Parameterising Wave Energy Converter Costs Using the CapEx and Similitude Methods," Energies, MDPI, vol. 14(4), pages 1-27, February.
    9. Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
    10. Carlos Perez-Collazo & Deborah Greaves & Gregorio Iglesias, 2018. "A Novel Hybrid Wind-Wave Energy Converter for Jacket-Frame Substructures," Energies, MDPI, vol. 11(3), pages 1-20, March.
    11. Pasquale Contestabile & Enrico Di Lauro & Mariano Buccino & Diego Vicinanza, 2016. "Economic Assessment of Overtopping BReakwater for Energy Conversion (OBREC): A Case Study in Western Australia," Sustainability, MDPI, vol. 9(1), pages 1-28, December.
    12. Clark, Caitlyn E. & Miller, Annalise & DuPont, Bryony, 2019. "An analytical cost model for co-located floating wind-wave energy arrays," Renewable Energy, Elsevier, vol. 132(C), pages 885-897.
    13. Abanades, J. & Greaves, D. & Iglesias, G., 2015. "Coastal defence using wave farms: The role of farm-to-coast distance," Renewable Energy, Elsevier, vol. 75(C), pages 572-582.
    14. Pasquale Contestabile & Vincenzo Ferrante & Diego Vicinanza, 2015. "Wave Energy Resource along the Coast of Santa Catarina (Brazil)," Energies, MDPI, vol. 8(12), pages 1-25, December.
    15. Coe, Ryan G. & Ahn, Seongho & Neary, Vincent S. & Kobos, Peter H. & Bacelli, Giorgio, 2021. "Maybe less is more: Considering capacity factor, saturation, variability, and filtering effects of wave energy devices," Applied Energy, Elsevier, vol. 291(C).
    16. Choupin, Ophelie & Henriksen, Michael & Tomlinson, Rodger, 2022. "Interrelationship between variables for wave direction-dependent WEC/site-configuration pairs using the CapEx method," Energy, Elsevier, vol. 248(C).
    17. Rusu, Liliana & Onea, Florin, 2015. "Assessment of the performances of various wave energy converters along the European continental coasts," Energy, Elsevier, vol. 82(C), pages 889-904.
    18. Carballo, R. & Sánchez, M. & Ramos, V. & Castro, A., 2014. "A tool for combined WEC-site selection throughout a coastal region: Rias Baixas, NW Spain," Applied Energy, Elsevier, vol. 135(C), pages 11-19.
    19. Sierra, J.P. & González-Marco, D. & Sospedra, J. & Gironella, X. & Mösso, C. & Sánchez-Arcilla, A., 2013. "Wave energy resource assessment in Lanzarote (Spain)," Renewable Energy, Elsevier, vol. 55(C), pages 480-489.
    20. Carballo, R. & Sánchez, M. & Ramos, V. & Fraguela, J.A. & Iglesias, G., 2015. "The intra-annual variability in the performance of wave energy converters: A comparative study in N Galicia (Spain)," Energy, Elsevier, vol. 82(C), pages 138-146.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:83:y:2015:i:c:p:837-849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.