IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v83y2015icp663-673.html
   My bibliography  Save this article

Fractionation of rice straw by a single-step solvothermal process: Effects of solvents, acid promoters, and microwave treatment

Author

Listed:
  • Imman, Saksit
  • Arnthong, Jantima
  • Burapatana, Vorakan
  • Champreda, Verawat
  • Laosiripojana, Navadol

Abstract

Fractionation of lignocellulosic components is a primary step for maximizing value-added conversion of plant biomass to biofuels and chemicals. In this study, different organic solvents (methyl isobutyl keone, ethyl acetate, toluene and diethyl ether) in the ternary water/alcohol/organic solvent system and acid promoters (H2SO4, HCl, and H3PO4) were studied on a single-step solvothermal fractionation of rice straw. Ethyl acetate was found to be a superior composite solvent to the conventional solvent MIBK by providing higher glucan and lignin yields. Glucan and xylan could be further solubilized and lignin recovery increased at higher temperature and acid concentration. The optimal fractionation conditions were found to be water/ethanol/ethyl acetate (62.5%:25%:12.5%) mixture using 0.05 M H2SO4 at 160 °C for 1 h, which gave cellulose-enriched solid with 71.4 wt% glucan yield. Hemicellulose (53.2 wt%) was obtained as sugars, and dehydration products in the aqueous/alcohol phase were minimal. 63.1 wt% lignin was recovered in the organic solvent phase with no cross-contamination of sugars. Microwave-assisted heating at 300 W, corresponded to the temperature of 160 °C for 1 h resulted in comparable glucan and lignin yields in the respective phases to conventional heating with the advantages of increased pentose yield and lower furan formation in the aqueous phase.

Suggested Citation

  • Imman, Saksit & Arnthong, Jantima & Burapatana, Vorakan & Champreda, Verawat & Laosiripojana, Navadol, 2015. "Fractionation of rice straw by a single-step solvothermal process: Effects of solvents, acid promoters, and microwave treatment," Renewable Energy, Elsevier, vol. 83(C), pages 663-673.
  • Handle: RePEc:eee:renene:v:83:y:2015:i:c:p:663-673
    DOI: 10.1016/j.renene.2015.04.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115003511
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.04.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Wei-Hsin & Tu, Yi-Jian & Sheen, Herng-Kuang, 2011. "Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating," Applied Energy, Elsevier, vol. 88(8), pages 2726-2734, August.
    2. Ghatak, Himadri Roy, 2011. "Biorefineries from the perspective of sustainability: Feedstocks, products, and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4042-4052.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Urszula Dziekońska-Kubczak & Joanna Berłowska & Piotr Dziugan & Piotr Patelski & Katarzyna Pielech-Przybylska & Maria Balcerek, 2018. "Nitric Acid Pretreatment of Jerusalem Artichoke Stalks for Enzymatic Saccharification and Bioethanol Production," Energies, MDPI, vol. 11(8), pages 1-17, August.
    2. Zhang, Jingzhi & Song, Yanliang & Wang, Bingwu & Zhang, Xu & Tan, Tianwei, 2016. "Biomass to bio-ethanol: The evaluation of hybrid Pennisetum used as raw material for bio-ethanol production compared with corn stalk by steam explosion joint use of mild chemicals," Renewable Energy, Elsevier, vol. 88(C), pages 164-170.
    3. Castro, Rafael Cunha de Assis & Mussatto, Solange I. & Roberto, Inês Conceição, 2017. "A vertical ball mill as a new reactor design for biomass hydrolysis and fermentation process," Renewable Energy, Elsevier, vol. 114(PB), pages 775-780.
    4. Suriyachai, Nopparat & Champreda, Verawat & Sakdaronnarong, Chularat & Shotipruk, Artiwan & Laosiripojana, Navadol, 2017. "Sequential organosolv fractionation/hydrolysis of sugarcane bagasse: The coupling use of heterogeneous H3PO4-activated carbon as acid promoter and hydrolysis catalyst," Renewable Energy, Elsevier, vol. 113(C), pages 1141-1148.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Shengdong & Huang, Wenjing & Huang, Wangxiang & Wang, Ke & Chen, Qiming & Wu, Yuanxin, 2015. "Pretreatment of rice straw for ethanol production by a two-step process using dilute sulfuric acid and sulfomethylation reagent," Applied Energy, Elsevier, vol. 154(C), pages 190-196.
    2. Kasivisvanathan, Harresh & Barilea, Ivan Dale U. & Ng, Denny K.S. & Tan, Raymond R., 2013. "Optimal operational adjustment in multi-functional energy systems in response to process inoperability," Applied Energy, Elsevier, vol. 102(C), pages 492-500.
    3. Qu, Guangfei & Lv, Pei & Cai, Yingying & Tu, Can & Ma, Xi & Ning, Ping, 2020. "Enhanced anaerobic fermentation of dairy manure by microelectrolysis in electric and magnetic fields," Renewable Energy, Elsevier, vol. 146(C), pages 2758-2765.
    4. Gilani, H. & Sahebi, H. & Oliveira, Fabricio, 2020. "Sustainable sugarcane-to-bioethanol supply chain network design: A robust possibilistic programming model," Applied Energy, Elsevier, vol. 278(C).
    5. Kumar, Sachin & Dheeran, Pratibha & Singh, Surendra P. & Mishra, Indra M. & Adhikari, Dilip K., 2015. "Kinetic studies of two-stage sulphuric acid hydrolysis of sugarcane bagasse," Renewable Energy, Elsevier, vol. 83(C), pages 850-858.
    6. Kumari, Dolly & Singh, Radhika, 2018. "Pretreatment of lignocellulosic wastes for biofuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 877-891.
    7. Yu, Kai Ling & Chen, Wei-Hsin & Sheen, Herng-Kuang & Chang, Jo-Shu & Lin, Chih-Sheng & Ong, Hwai Chyuan & Show, Pau Loke & Ng, Eng-Poh & Ling, Tau Chuan, 2020. "Production of microalgal biochar and reducing sugar using wet torrefaction with microwave-assisted heating and acid hydrolysis pretreatment," Renewable Energy, Elsevier, vol. 156(C), pages 349-360.
    8. Ocreto, Jherwin B. & Chen, Wei-Hsin & Ubando, Aristotle T. & Park, Young-Kwon & Sharma, Amit Kumar & Ashokkumar, Veeramuthu & Ok, Yong Sik & Kwon, Eilhann E. & Rollon, Analiza P. & De Luna, Mark Danie, 2021. "A critical review on second- and third-generation bioethanol production using microwaved-assisted heating (MAH) pretreatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    9. Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
    10. Sánchez, Antonio Santos & Silva, Yuri Lopes & Kalid, Ricardo Araújo & Cohim, Eduardo & Torres, Ednildo Andrade, 2017. "Waste bio-refineries for the cassava starch industry: New trends and review of alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1265-1275.
    11. Taylor, Benjamin & Xiao, Ning & Sikorski, Janusz & Yong, Minloon & Harris, Tom & Helme, Tim & Smallbone, Andrew & Bhave, Amit & Kraft, Markus, 2013. "Techno-economic assessment of carbon-negative algal biodiesel for transport solutions," Applied Energy, Elsevier, vol. 106(C), pages 262-274.
    12. Peng, Huadong & Chen, Hongzhang & Qu, Yongshui & Li, Hongqiang & Xu, Jian, 2014. "Bioconversion of different sizes of microcrystalline cellulose pretreated by microwave irradiation with/without NaOH," Applied Energy, Elsevier, vol. 117(C), pages 142-148.
    13. Khatiwada, Dilip & Leduc, Sylvain & Silveira, Semida & McCallum, Ian, 2016. "Optimizing ethanol and bioelectricity production in sugarcane biorefineries in Brazil," Renewable Energy, Elsevier, vol. 85(C), pages 371-386.
    14. Moretti, Marcia Maria de Souza & Bocchini-Martins, Daniela Alonso & Nunes, Christiane da Costa Carreira & Villena, Maria Arévalo & Perrone, Olavo Micali & Silva, Roberto da & Boscolo, Maurício & Gomes, 2014. "Pretreatment of sugarcane bagasse with microwaves irradiation and its effects on the structure and on enzymatic hydrolysis," Applied Energy, Elsevier, vol. 122(C), pages 189-195.
    15. Chandra, R. & Takeuchi, H. & Hasegawa, T., 2012. "Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1462-1476.
    16. Antonios Nazos & Dorothea Politi & Georgios Giakoumakis & Dimitrios Sidiras, 2022. "Simulation and Optimization of Lignocellulosic Biomass Wet- and Dry-Torrefaction Process for Energy, Fuels and Materials Production: A Review," Energies, MDPI, vol. 15(23), pages 1-35, November.
    17. Manhongo, T.T. & Chimphango, A.F.A. & Thornley, P. & Röder, M., 2022. "Current status and opportunities for fruit processing waste biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    18. Suriyachai, Nopparat & Champreda, Verawat & Sakdaronnarong, Chularat & Shotipruk, Artiwan & Laosiripojana, Navadol, 2017. "Sequential organosolv fractionation/hydrolysis of sugarcane bagasse: The coupling use of heterogeneous H3PO4-activated carbon as acid promoter and hydrolysis catalyst," Renewable Energy, Elsevier, vol. 113(C), pages 1141-1148.
    19. Dantas, Guilherme A. & Legey, Luiz F.L. & Mazzone, Antonella, 2013. "Energy from sugarcane bagasse in Brazil: An assessment of the productivity and cost of different technological routes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 356-364.
    20. Ramadoss, Govindarajan & Muthukumar, Karuppan, 2016. "Ultrasound assisted metal chloride treatment of sugarcane bagasse for bioethanol production," Renewable Energy, Elsevier, vol. 99(C), pages 1092-1102.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:83:y:2015:i:c:p:663-673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.