IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v78y2015icp406-417.html
   My bibliography  Save this article

Assessment of algae biodiesel viability based on the area requirement in the European Union, United States and Brazil

Author

Listed:
  • Speranza, Lais Galileu
  • Ingram, Andrew
  • Leeke, Gary A.

Abstract

The replacement of diesel by biofuels is considered unrealistic because of the land used to produce their feedstock. One appointed solution is the use of algae which have higher productivity per unit area when compared with other feedstocks. In light of this, the total area, including water and land required for the European Union (EU), the United States (US), and Brazil was determined using international policies and targets, the present and future diesel demand, the current biodiesel production (released by international organizations), and specific data of algae productivity from the literature.

Suggested Citation

  • Speranza, Lais Galileu & Ingram, Andrew & Leeke, Gary A., 2015. "Assessment of algae biodiesel viability based on the area requirement in the European Union, United States and Brazil," Renewable Energy, Elsevier, vol. 78(C), pages 406-417.
  • Handle: RePEc:eee:renene:v:78:y:2015:i:c:p:406-417
    DOI: 10.1016/j.renene.2014.12.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114008970
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.12.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kovacevic, Vujadin & Wesseler, Justus, 2010. "Cost-effectiveness analysis of algae energy production in the EU," Energy Policy, Elsevier, vol. 38(10), pages 5749-5757, October.
    2. Pate, Ron & Klise, Geoff & Wu, Ben, 2011. "Resource demand implications for US algae biofuels production scale-up," Applied Energy, Elsevier, vol. 88(10), pages 3377-3388.
    3. Sorda, Giovanni & Banse, Martin & Kemfert, Claudia, 2010. "An overview of biofuel policies across the world," Energy Policy, Elsevier, vol. 38(11), pages 6977-6988, November.
    4. Collet, Pierre & Lardon, Laurent & Hélias, Arnaud & Bricout, Stéphanie & Lombaert-Valot, Isabelle & Perrier, Béatrice & Lépine, Olivier & Steyer, Jean-Philippe & Bernard, Olivier, 2014. "Biodiesel from microalgae – Life cycle assessment and recommendations for potential improvements," Renewable Energy, Elsevier, vol. 71(C), pages 525-533.
    5. Davis, Ryan & Aden, Andy & Pienkos, Philip T., 2011. "Techno-economic analysis of autotrophic microalgae for fuel production," Applied Energy, Elsevier, vol. 88(10), pages 3524-3531.
    6. Avinash, A. & Subramaniam, D. & Murugesan, A., 2014. "Bio-diesel—A global scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 517-527.
    7. Roberts, Thomas & Upham, Paul, 2012. "Prospects for the use of macro-algae for fuel in Ireland and the UK: An overview of marine management issues," Marine Policy, Elsevier, vol. 36(5), pages 1047-1053.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Correa, Diego F. & Beyer, Hawthorne L. & Possingham, Hugh P. & Fargione, Joseph E. & Hill, Jason D. & Schenk, Peer M., 2021. "Microalgal biofuel production at national scales: Reducing conflicts with agricultural lands and biodiversity within countries," Energy, Elsevier, vol. 215(PA).
    2. Galadima, Ahmad & Muraza, Oki, 2018. "Hydrothermal liquefaction of algae and bio-oil upgrading into liquid fuels: Role of heterogeneous catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1037-1048.
    3. Chamkalani, A. & Zendehboudi, S. & Rezaei, N. & Hawboldt, K., 2020. "A critical review on life cycle analysis of algae biodiesel: current challenges and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Zhang, Lei & Wang, Nan & Yang, Mei & Ding, Ke & Wang, Yong-Zhong & Huo, Danqun & Hou, Changjun, 2019. "Lipid accumulation and biodiesel quality of Chlorella pyrenoidosa under oxidative stress induced by nutrient regimes," Renewable Energy, Elsevier, vol. 143(C), pages 1782-1790.
    5. Tasić, Marija B. & Pinto, Luisa Fernanda Rios & Klein, Bruno Colling & Veljković, Vlada B. & Filho, Rubens Maciel, 2016. "Botryococcus braunii for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 260-270.
    6. Yin, Yanan & Wang, Jianlong, 2019. "Hydrogen production and energy recovery from macroalgae Saccharina japonica by different pretreatment methods," Renewable Energy, Elsevier, vol. 141(C), pages 1-8.
    7. Soltani, Soroush & Roodbar Shojaei, Taha & Khanian, Nasrin & Shean Yaw Choong, Thomas & Asim, Nilofar & Zhao, Yue, 2022. "Artificial neural network method modeling of microwave-assisted esterification of PFAD over mesoporous TiO2‒ZnO catalyst," Renewable Energy, Elsevier, vol. 187(C), pages 760-773.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chamkalani, A. & Zendehboudi, S. & Rezaei, N. & Hawboldt, K., 2020. "A critical review on life cycle analysis of algae biodiesel: current challenges and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Thomassen, Gwenny & Van Dael, Miet & Lemmens, Bert & Van Passel, Steven, 2017. "A review of the sustainability of algal-based biorefineries: Towards an integrated assessment framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 876-887.
    3. Zhang, Yanting & Fan, Xiaolei & Yang, Zhiman & Wang, Huanyu & Yang, Dawei & Guo, Rongbo, 2012. "Characterization of H2 photoproduction by a new marine green alga, Platymonas helgolandica var. tsingtaoensis," Applied Energy, Elsevier, vol. 92(C), pages 38-43.
    4. Chaudry, Sofia & Bahri, Parisa A. & Moheimani, Navid R., 2015. "Pathways of processing of wet microalgae for liquid fuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1240-1250.
    5. Andre DuPont, 2013. "Best practices for the sustainable production of algae-based biofuel in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(1), pages 97-111, January.
    6. Zhu, Liandong, 2015. "Biorefinery as a promising approach to promote microalgae industry: An innovative framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1376-1384.
    7. Mohseni, Shayan & Pishvaee, Mir Saman & Sahebi, Hadi, 2016. "Robust design and planning of microalgae biomass-to-biodiesel supply chain: A case study in Iran," Energy, Elsevier, vol. 111(C), pages 736-755.
    8. Chen, Jiaxin & Li, Ji & Dong, Wenyi & Zhang, Xiaolei & Tyagi, Rajeshwar D. & Drogui, Patrick & Surampalli, Rao Y., 2018. "The potential of microalgae in biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 336-346.
    9. Taylor, Benjamin & Xiao, Ning & Sikorski, Janusz & Yong, Minloon & Harris, Tom & Helme, Tim & Smallbone, Andrew & Bhave, Amit & Kraft, Markus, 2013. "Techno-economic assessment of carbon-negative algal biodiesel for transport solutions," Applied Energy, Elsevier, vol. 106(C), pages 262-274.
    10. Boruff, Bryan J. & Moheimani, Navid R. & Borowitzka, Michael A., 2015. "Identifying locations for large-scale microalgae cultivation in Western Australia: A GIS approach," Applied Energy, Elsevier, vol. 149(C), pages 379-391.
    11. Doshi, Amar & Pascoe, Sean & Coglan, Louisa & Rainey, Thomas J., 2016. "Economic and policy issues in the production of algae-based biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 329-337.
    12. Correa, Diego F. & Beyer, Hawthorne L. & Fargione, Joseph E. & Hill, Jason D. & Possingham, Hugh P. & Thomas-Hall, Skye R. & Schenk, Peer M., 2019. "Towards the implementation of sustainable biofuel production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 250-263.
    13. Sharma, Yogesh Chandra & Singh, Veena, 2017. "Microalgal biodiesel: A possible solution for India’s energy security," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 72-88.
    14. Riccardo De-Luca & Fabrizio Bezzo & Quentin Béchet & Olivier Bernard, 2019. "Meteorological Data-Based Optimal Control Strategy for Microalgae Cultivation in Open Pond Systems," Complexity, Hindawi, vol. 2019, pages 1-12, January.
    15. Raja Chowdhury & Nidia Caetano & Matthew J. Franchetti & Kotnoor Hariprasad, 2023. "Life Cycle Based GHG Emissions from Algae Based Bioenergy with a Special Emphasis on Climate Change Indicators and Their Uses in Dynamic LCA: A Review," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    16. Bennion, Edward P. & Ginosar, Daniel M. & Moses, John & Agblevor, Foster & Quinn, Jason C., 2015. "Lifecycle assessment of microalgae to biofuel: Comparison of thermochemical processing pathways," Applied Energy, Elsevier, vol. 154(C), pages 1062-1071.
    17. Colin M. Beal & Robert E. Hebner & Michael E. Webber & Rodney S. Ruoff & A. Frank Seibert & Carey W. King, 2012. "Comprehensive Evaluation of Algal Biofuel Production: Experimental and Target Results," Energies, MDPI, vol. 5(6), pages 1-39, June.
    18. Lucas Reijnders, 2013. "Lipid‐based liquid biofuels from autotrophic microalgae: energetic and environmental performance," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(1), pages 73-85, January.
    19. Beal, C.M. & Hebner, R.E. & Webber, M.E., 2012. "Thermodynamic analysis of algal biocrude production," Energy, Elsevier, vol. 44(1), pages 925-943.
    20. Efroymson, Rebecca A. & Pattullo, Molly B. & Mayes, Melanie A. & Mathews, Teresa J. & Mandal, Shovon & Schoenung, Susan, 2020. "Exploring the sustainability and sealing mechanisms of unlined ponds for growing algae for fuel and other commodity-scale products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:78:y:2015:i:c:p:406-417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.