IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v74y2015icp456-463.html
   My bibliography  Save this article

Potential for rice straw ethanol production in the Mekong Delta, Vietnam

Author

Listed:
  • Diep, Nhu Quynh
  • Sakanishi, Kinya
  • Nakagoshi, Nobukazu
  • Fujimoto, Shinji
  • Minowa, Tomoaki

Abstract

This study is to evaluate the potential for development of a cellulosic ethanol facility in Vietnam. Rice straw is abundant in Vietnam and highly concentrated in the Mekong Delta, where about 26 Mt year−1 of rice straw has been yearly produced. To minimize the overall production cost (PC) of ethanol from rice straw, it is crucial to choose the optimal facility size. The delivered cost of rice straw varied from 20.5 to 65.4 $ dry t−1 depending on transportation distance. The Mekong Delta has much lower rice straw prices compared with other regions in Vietnam because of high density and quantity of rice straw supply. Thus, this region has been considered as the most suitable location for deploying ethanol production in Vietnam. The optimal plant size of ethanol production in the region was estimated up to 200 ML year−1. The improvement in solid concentration of material in the hydrothermal pre-treatment step and using residues for power generation could substantially reduce the PC in Vietnam, where energy costs account for the second largest contribution to the PC, following only enzyme costs. The potential for building larger ethanol plants with low rice straw costs can reduce ethanol production costs in Vietnam. The current estimated production cost for an optimal plant size of 200 ML year−1 was 1.19 $ L−1. For the future scenario, considering improvements in pre-treatment, enzyme hydrolysis steps, specific enzyme activity, and applying residues for energy generation, the ethanol production cost could reduce to 0.45 $ L−1 for a plant size of 200 ML year−1 in Vietnam. These data indicated that the cost-competitiveness of ethanol production could be realized in Vietnam with future improvements in production technologies.

Suggested Citation

  • Diep, Nhu Quynh & Sakanishi, Kinya & Nakagoshi, Nobukazu & Fujimoto, Shinji & Minowa, Tomoaki, 2015. "Potential for rice straw ethanol production in the Mekong Delta, Vietnam," Renewable Energy, Elsevier, vol. 74(C), pages 456-463.
  • Handle: RePEc:eee:renene:v:74:y:2015:i:c:p:456-463
    DOI: 10.1016/j.renene.2014.08.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114005217
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.08.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Delivand, Mitra Kami & Barz, Mirko & Gheewala, Shabbir H., 2011. "Logistics cost analysis of rice straw for biomass power generation in Thailand," Energy, Elsevier, vol. 36(3), pages 1435-1441.
    2. Perlack, R.D. & Turhollow, A.F., 2003. "Feedstock cost analysis of corn stover residues for further processing," Energy, Elsevier, vol. 28(14), pages 1395-1403.
    3. Diep, Nhu Quynh & Fujimoto, Shinji & Minowa, Tomoaki & Sakanishi, Kinya & Nakagoshi, Nobukazu, 2012. "Estimation of the potential of rice straw for ethanol production and the optimum facility size for different regions in Vietnam," Applied Energy, Elsevier, vol. 93(C), pages 205-211.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siti Norliyana Harun & Marlia Mohd Hanafiah & Noorashikin Md Noor, 2022. "Rice Straw Utilisation for Bioenergy Production: A Brief Overview," Energies, MDPI, vol. 15(15), pages 1-17, July.
    2. Shafie, S.M., 2016. "A review on paddy residue based power generation: Energy, environment and economic perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1089-1100.
    3. Abdelhady, Suzan & Borello, Domenico & Shaban, Ahmed, 2018. "Techno-economic assessment of biomass power plant fed with rice straw: Sensitivity and parametric analysis of the performance and the LCOE," Renewable Energy, Elsevier, vol. 115(C), pages 1026-1034.
    4. Ko, Chun-Han & Chaiprapat, Sumate & Kim, Lee-Hyung & Hadi, Pejman & Hsu, Shu-Chien & Leu, Shao-Yuan, 2017. "Carbon sequestration potential via energy harvesting from agricultural biomass residues in Mekong River basin, Southeast Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1051-1062.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shafie, S.M., 2016. "A review on paddy residue based power generation: Energy, environment and economic perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1089-1100.
    2. Akhtari, Shaghaygh & Sowlati, Taraneh & Day, Ken, 2014. "The effects of variations in supply accessibility and amount on the economics of using regional forest biomass for generating district heat," Energy, Elsevier, vol. 67(C), pages 631-640.
    3. Diep, Nhu Quynh & Fujimoto, Shinji & Minowa, Tomoaki & Sakanishi, Kinya & Nakagoshi, Nobukazu, 2012. "Estimation of the potential of rice straw for ethanol production and the optimum facility size for different regions in Vietnam," Applied Energy, Elsevier, vol. 93(C), pages 205-211.
    4. Shafie, S.M. & Mahlia, T.M.I. & Masjuki, H.H., 2013. "Life cycle assessment of rice straw co-firing with coal power generation in Malaysia," Energy, Elsevier, vol. 57(C), pages 284-294.
    5. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    6. Eric, Aleksandar & Dakic, Dragoljub & Nemoda, Stevan & Komatina, Mirko & Repic, Branislav, 2012. "Experimental determination thermo physical characteristics of balled biomass," Energy, Elsevier, vol. 45(1), pages 350-357.
    7. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    8. Zhang, Qin & Zhou, Dequn & Zhou, Peng & Ding, Hao, 2013. "Cost Analysis of straw-based power generation in Jiangsu Province, China," Applied Energy, Elsevier, vol. 102(C), pages 785-793.
    9. Miranowski, John & Rosburg, Alicia, 2010. "An Economic Breakeven Model of Cellulosic Feedstock Production and Ethanol Conversion with Implied Carbon Pricing," Staff General Research Papers Archive 13166, Iowa State University, Department of Economics.
    10. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    11. Lim, Jeng Shiun & Abdul Manan, Zainuddin & Wan Alwi, Sharifah Rafidah & Hashim, Haslenda, 2012. "A review on utilisation of biomass from rice industry as a source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3084-3094.
    12. Tan, Sie Ting & Hashim, Haslenda & Abdul Rashid, Ahmad H. & Lim, Jeng Shiun & Ho, Wai Shin & Jaafar, Abu Bakar, 2018. "Economic and spatial planning for sustainable oil palm biomass resources to mitigate transboundary haze issue," Energy, Elsevier, vol. 146(C), pages 169-178.
    13. Wang, Xiaoquan & Morrison, William & Du, Zhenyi & Wan, Yiqin & Lin, Xiangyang & Chen, Paul & Ruan, Roger, 2012. "Biomass temperature profile development and its implications under the microwave-assisted pyrolysis condition," Applied Energy, Elsevier, vol. 99(C), pages 386-392.
    14. Tittmann, P.W. & Parker, N.C. & Hart, Q.J. & Jenkins, B.M., 2010. "A spatially explicit techno-economic model of bioenergy and biofuels production in California," Journal of Transport Geography, Elsevier, vol. 18(6), pages 715-728.
    15. Maung, Thein A. & Gustafson, Cole R. & Saxowsky, David M. & Nowatzki, John & Miljkovic, Tatjana & Ripplinger, David, 2013. "The logistics of supplying single vs. multi-crop cellulosic feedstocks to a biorefinery in southeast North Dakota," Applied Energy, Elsevier, vol. 109(C), pages 229-238.
    16. Thanarat Pratumwan & Warunee Tia & Adisak Nathakaranakule & Somchart Soponronnarit, 2022. "Grid-connected Electricity Generation Potential from Energy Crops: A Case Study of Marginal Land in Thailand," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 62-72.
    17. Singh, Jaswinder, 2016. "Identifying an economic power production system based on agricultural straw on regional basis in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1140-1155.
    18. Stich, J. & Ramachandran, S. & Hamacher, T. & Stimming, U., 2017. "Techno-economic estimation of the power generation potential from biomass residues in Southeast Asia," Energy, Elsevier, vol. 135(C), pages 930-942.
    19. Parker, Nathan C, 2007. "Optimizing the Design of Biomass Hydrogen Supply Chains Using Real-World Spatial Distributions: A Case Study Using California Rice Straw," Institute of Transportation Studies, Working Paper Series qt8sp9n37c, Institute of Transportation Studies, UC Davis.
    20. Hao Lv & Hao Ding & Dequn Zhou & Peng Zhou, 2014. "A Site Selection Model for a Straw-Based Power Generation Plant with CO 2 Emissions," Sustainability, MDPI, vol. 6(10), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:74:y:2015:i:c:p:456-463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.