IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v50y2013icp858-878.html
   My bibliography  Save this article

A statistical investigation of biodiesel physical and chemical properties, and their correlation with the degree of unsaturation

Author

Listed:
  • Giakoumis, Evangelos G.

Abstract

In the present work, a detailed statistical investigation is conducted in order to a) assess the average values of all properties (incl. fatty acid composition) of the most investigated biodiesels and b) quantify the effects of feedstock unsaturation on the physical and chemical properties of the derived methyl ester. To this aim, the available literature on biodiesel properties and fatty acid composition was gathered (more than 750 papers published in International Journals and Conferences), and the reported measurements are statistically analyzed with respect to the feedstock and its chemical composition and structure; in total, 26 different biodiesel feedstocks are studied, comprising of twenty-two edible and non-edible vegetable oils and four animal fats. From the analysis, collective results and statistical data are derived for each property that are then compared with the European and American specifications. The effects of unsaturation are investigated with separate best-fit linear curves provided for each interesting property with respect to the average number of double bonds. The various trends observed are discussed and explained based on fundamental aspects of fuel chemistry and on the consequences they have on real engine operation.

Suggested Citation

  • Giakoumis, Evangelos G., 2013. "A statistical investigation of biodiesel physical and chemical properties, and their correlation with the degree of unsaturation," Renewable Energy, Elsevier, vol. 50(C), pages 858-878.
  • Handle: RePEc:eee:renene:v:50:y:2013:i:c:p:858-878
    DOI: 10.1016/j.renene.2012.07.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112004752
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.07.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gallagher, Brian J., 2011. "The economics of producing biodiesel from algae," Renewable Energy, Elsevier, vol. 36(1), pages 158-162.
    2. Gopinath, A. & Puhan, Sukumar & Nagarajan, G., 2009. "Theoretical modeling of iodine value and saponification value of biodiesel fuels from their fatty acid composition," Renewable Energy, Elsevier, vol. 34(7), pages 1806-1811.
    3. Bhale, Purnanand Vishwanathrao & Deshpande, Nishikant V. & Thombre, Shashikant B., 2009. "Improving the low temperature properties of biodiesel fuel," Renewable Energy, Elsevier, vol. 34(3), pages 794-800.
    4. Lapuerta, Magín & Rodríguez-Fernández, José & de Mora, Emilio Font, 2009. "Correlation for the estimation of the cetane number of biodiesel fuels and implications on the iodine number," Energy Policy, Elsevier, vol. 37(11), pages 4337-4344, November.
    5. Gog, Adriana & Roman, Marius & Toşa, Monica & Paizs, Csaba & Irimie, Florin Dan, 2012. "Biodiesel production using enzymatic transesterification – Current state and perspectives," Renewable Energy, Elsevier, vol. 39(1), pages 10-16.
    6. Komninos, N.P. & Rakopoulos, C.D., 2012. "Modeling HCCI combustion of biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1588-1610.
    7. Gui, M.M. & Lee, K.T. & Bhatia, S., 2008. "Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock," Energy, Elsevier, vol. 33(11), pages 1646-1653.
    8. Giakoumis, Evangelos G., 2012. "A statistical investigation of biodiesel effects on regulated exhaust emissions during transient cycles," Applied Energy, Elsevier, vol. 98(C), pages 273-291.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giakoumis, Evangelos G., 2018. "Analysis of 22 vegetable oils’ physico-chemical properties and fatty acid composition on a statistical basis, and correlation with the degree of unsaturation," Renewable Energy, Elsevier, vol. 126(C), pages 403-419.
    2. Wenbo Ai & Haeng Muk Cho, 2024. "Predictive Models for Biodiesel Performance and Emission Characteristics in Diesel Engines: A Review," Energies, MDPI, vol. 17(19), pages 1-25, September.
    3. Yaakob, Zahira & Mohammad, Masita & Alherbawi, Mohammad & Alam, Zahangir & Sopian, Kamaruzaman, 2013. "Overview of the production of biodiesel from Waste cooking oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 184-193.
    4. Giakoumis, Evangelos G. & Rakopoulos, Dimitrios C. & Rakopoulos, Constantine D., 2016. "Combustion noise radiation during dynamic diesel engine operation including effects of various biofuel blends: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1099-1113.
    5. Shemelis N. Gebremariam & Trine Hvoslef-Eide & Meseret T. Terfa & Jorge M. Marchetti, 2019. "Techno-Economic Performance of Different Technological Based Bio-Refineries for Biofuel Production," Energies, MDPI, vol. 12(20), pages 1-21, October.
    6. Christopher, Lew P. & Hemanathan Kumar, & Zambare, Vasudeo P., 2014. "Enzymatic biodiesel: Challenges and opportunities," Applied Energy, Elsevier, vol. 119(C), pages 497-520.
    7. Giakoumis, Evangelos G. & Rakopoulos, Constantine D. & Dimaratos, Athanasios M. & Rakopoulos, Dimitrios C., 2013. "Exhaust emissions with ethanol or n-butanol diesel fuel blends during transient operation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 170-190.
    8. Banković-Ilić, Ivana B. & Stamenković, Olivera S. & Veljković, Vlada B., 2012. "Biodiesel production from non-edible plant oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3621-3647.
    9. No, Soo-Young, 2011. "Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 131-149, January.
    10. Adewale, Peter & Dumont, Marie-Josée & Ngadi, Michael, 2015. "Recent trends of biodiesel production from animal fat wastes and associated production techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 574-588.
    11. Guldhe, Abhishek & Singh, Bhaskar & Mutanda, Taurai & Permaul, Kugen & Bux, Faizal, 2015. "Advances in synthesis of biodiesel via enzyme catalysis: Novel and sustainable approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1447-1464.
    12. Ko, Chun-Han & Yeh, Kai-Wun & Wang, Ya-Nang & Wu, Chien-Hou & Chang, Fang-Chih & Cheng, Ming-Hsun & Liou, Chia-Shin, 2012. "Impact of methanol addition strategy on enzymatic transesterification of jatropha oil for biodiesel processing," Energy, Elsevier, vol. 48(1), pages 375-379.
    13. Lanjekar, R.D. & Deshmukh, D., 2016. "A review of the effect of the composition of biodiesel on NOx emission, oxidative stability and cold flow properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1401-1411.
    14. Atabani, A.E. & Silitonga, A.S. & Badruddin, Irfan Anjum & Mahlia, T.M.I. & Masjuki, H.H. & Mekhilef, S., 2012. "A comprehensive review on biodiesel as an alternative energy resource and its characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2070-2093.
    15. Bukkarapu, Kiran Raj & Krishnasamy, Anand, 2022. "A critical review on available models to predict engine fuel properties of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    16. Shahid, Ejaz M. & Jamal, Younis, 2011. "Production of biodiesel: A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4732-4745.
    17. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    18. Devin Moeller & Heidi L. Sieverding & James J. Stone, 2017. "Comparative Farm-Gate Life Cycle Assessment of Oilseed Feedstocks in the Northern Great Plains," Biophysical Economics and Resource Quality, Springer, vol. 2(4), pages 1-16, December.
    19. Li, Zhuoxue & Yang, Depo & Huang, Miaoling & Hu, Xinjun & Shen, Jiangang & Zhao, Zhimin & Chen, Jianping, 2012. "Chrysomya megacephala (Fabricius) larvae: A new biodiesel resource," Applied Energy, Elsevier, vol. 94(C), pages 349-354.
    20. José Hidalgo-Crespo & César I. Alvarez-Mendoza & Manuel Soto & Jorge Luis Amaya-Rivas, 2022. "Towards a Circular Economy Development for Household Used Cooking Oil in Guayaquil: Quantification, Characterization, Modeling, and Geographical Mapping," Sustainability, MDPI, vol. 14(15), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:50:y:2013:i:c:p:858-878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.