IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v48y2012icp557-564.html
   My bibliography  Save this article

Efficiency improvement of a tidal current turbine utilizing a larger area of channel

Author

Listed:
  • Kim, Ki-Pyoung
  • Ahmed, M. Rafiuddin
  • Lee, Young-Ho

Abstract

There is a growing interest in utilizing tidal currents for power generation which has led to extensive research on this source of renewable energy. The amount of energy that can be extracted from tidal currents has been a topic of considerable interest to researchers for many years; still, there is no consensus on the extent to which this resource can be exploited. A turbine generates no power if it presents no resistance to the flow or if it presents so much resistance that there is no flow through it. At the same time, the estimation of exploitable resource should take into consideration the environmental, economic and social constraints. In view of these, the design of efficient turbines driven by bi-directional tidal currents has been a challenge to researchers for some time. There appears to be a general agreement among researchers that a number of turbines spread over the width of the channel can extract more energy compared to an isolated turbine. The present work is aimed at quantifying the improvement in the performance of a given type of turbine by utilizing a larger area of the channel. Numerical experiments were performed using the commercial CFD code ANSYS-CFX to study the performance of a bi-directional cross-flow turbine by simulating two cases of i) a single turbine and ii) a number of equally spaced turbines. It was found that the Coefficient of Power can be increased significantly by employing a larger area of the channel.

Suggested Citation

  • Kim, Ki-Pyoung & Ahmed, M. Rafiuddin & Lee, Young-Ho, 2012. "Efficiency improvement of a tidal current turbine utilizing a larger area of channel," Renewable Energy, Elsevier, vol. 48(C), pages 557-564.
  • Handle: RePEc:eee:renene:v:48:y:2012:i:c:p:557-564
    DOI: 10.1016/j.renene.2012.06.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112003692
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.06.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, X. & Chick, J.P. & Bryden, I.G., 2008. "Laboratory-scale simulation of energy extraction from tidal currents," Renewable Energy, Elsevier, vol. 33(6), pages 1267-1274.
    2. Bryden, Ian G. & Couch, Scott J., 2007. "How much energy can be extracted from moving water with a free surface: A question of importance in the field of tidal current energy?," Renewable Energy, Elsevier, vol. 32(11), pages 1961-1966.
    3. Charlier, Roger H., 2003. "A "sleeper" awakes: tidal current power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(6), pages 515-529, December.
    4. Bahaj, A.S. & Molland, A.F. & Chaplin, J.R. & Batten, W.M.J., 2007. "Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank," Renewable Energy, Elsevier, vol. 32(3), pages 407-426.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weerakoon, A.H. Samitha & Kim, Byung-Ha & Cho, Young-Jin & Prasad, Deepak Divashkar & Ahmed, M. Rafiuddin & Lee, Young-Ho, 2021. "Design optimization of a novel vertical augmentation channel housing a cross-flow turbine and performance evaluation as a wave energy converter," Renewable Energy, Elsevier, vol. 180(C), pages 1300-1314.
    2. Qian, Peng & Feng, Bo & Liu, Hao & Tian, Xiange & Si, Yulin & Zhang, Dahai, 2019. "Review on configuration and control methods of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 125-139.
    3. Elbatran, A.H. & Yaakob, O.B. & Ahmed, Yasser M. & Jalal, M. Rajali, 2015. "Novel approach of bidirectional diffuser-augmented channels system for enhancing hydrokinetic power generation in channels," Renewable Energy, Elsevier, vol. 83(C), pages 809-819.
    4. Elbatran, A.H. & Yaakob, O.B. & Ahmed, Yasser M. & Shabara, H.M., 2015. "Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 40-50.
    5. A. H. Samitha Weerakoon & Young-Ho Lee & Mohsen Assadi, 2023. "Wave Energy Convertor for Bilateral Offshore Wave Flows: A Computational Fluid Dynamics (CFD) Study," Sustainability, MDPI, vol. 15(9), pages 1-40, April.
    6. Zhou, Daqing & Deng, Zhiqun (Daniel), 2017. "Ultra-low-head hydroelectric technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 23-30.
    7. Du, Jiyun & Shen, Zhicheng & Yang, Hongxing, 2018. "Effects of different block designs on the performance of inline cross-flow turbines in urban water mains," Applied Energy, Elsevier, vol. 228(C), pages 97-107.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rourke, Fergal O. & Boyle, Fergal & Reynolds, Anthony, 2010. "Marine current energy devices: Current status and possible future applications in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1026-1036, April.
    2. Rosli, R. & Norman, R. & Atlar, M., 2016. "Experimental investigations of the Hydro-Spinna turbine performance," Renewable Energy, Elsevier, vol. 99(C), pages 1227-1234.
    3. Lilia Flores Mateos & Michael Hartnett, 2020. "Hydrodynamic Effects of Tidal-Stream Power Extraction for Varying Turbine Operating Conditions," Energies, MDPI, vol. 13(12), pages 1-23, June.
    4. Goundar, Jai N. & Ahmed, M. Rafiuddin & Lee, Young-Ho, 2012. "Numerical and experimental studies on hydrofoils for marine current turbines," Renewable Energy, Elsevier, vol. 42(C), pages 173-179.
    5. Stephen Nash & Agnieszka I. Olbert & Michael Hartnett, 2015. "Towards a Low-Cost Modelling System for Optimising the Layout of Tidal Turbine Arrays," Energies, MDPI, vol. 8(12), pages 1-19, November.
    6. O Rourke, Fergal & Boyle, Fergal & Reynolds, Anthony, 2010. "Tidal energy update 2009," Applied Energy, Elsevier, vol. 87(2), pages 398-409, February.
    7. Roc, Thomas & Conley, Daniel C. & Greaves, Deborah, 2013. "Methodology for tidal turbine representation in ocean circulation model," Renewable Energy, Elsevier, vol. 51(C), pages 448-464.
    8. O'Rourke, Fergal & Boyle, Fergal & Reynolds, Anthony, 2010. "Tidal current energy resource assessment in Ireland: Current status and future update," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3206-3212, December.
    9. Segura, E. & Morales, R. & Somolinos, J.A. & López, A., 2017. "Techno-economic challenges of tidal energy conversion systems: Current status and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 536-550.
    10. Bai, Guanghui & Li, Wei & Chang, Hao & Li, Guojun, 2016. "The effect of tidal current directions on the optimal design and hydrodynamic performance of a three-turbine system," Renewable Energy, Elsevier, vol. 94(C), pages 48-54.
    11. Modali, Pranav K. & Vinod, Ashwin & Banerjee, Arindam, 2021. "Towards a better understanding of yawed turbine wake for efficient wake steering in tidal arrays," Renewable Energy, Elsevier, vol. 177(C), pages 482-494.
    12. Matevz Pintar & Athanasios J. Kolios, 2013. "Design of a Novel Experimental Facility for Testing of Tidal Arrays," Energies, MDPI, vol. 6(8), pages 1-17, August.
    13. Chen, Yaling & Lin, Binliang & Lin, Jie & Wang, Shujie, 2017. "Experimental study of wake structure behind a horizontal axis tidal stream turbine," Applied Energy, Elsevier, vol. 196(C), pages 82-96.
    14. Batten, W.M.J. & Bahaj, A.S. & Molland, A.F. & Chaplin, J.R., 2008. "The prediction of the hydrodynamic performance of marine current turbines," Renewable Energy, Elsevier, vol. 33(5), pages 1085-1096.
    15. Sánchez, M. & Carballo, R. & Ramos, V. & Iglesias, G., 2014. "Energy production from tidal currents in an estuary: A comparative study of floating and bottom-fixed turbines," Energy, Elsevier, vol. 77(C), pages 802-811.
    16. Kai-Wern Ng & Wei-Haur Lam & Khai-Ching Ng, 2013. "2002–2012: 10 Years of Research Progress in Horizontal-Axis Marine Current Turbines," Energies, MDPI, vol. 6(3), pages 1-30, March.
    17. Kolekar, Nitin & Banerjee, Arindam, 2015. "Performance characterization and placement of a marine hydrokinetic turbine in a tidal channel under boundary proximity and blockage effects," Applied Energy, Elsevier, vol. 148(C), pages 121-133.
    18. Yuquan Zhang & Jisheng Zhang & Yuan Zheng & Chunxia Yang & Wei Zang & E. Fernandez-Rodriguez, 2017. "Experimental Analysis and Evaluation of the Numerical Prediction of Wake Characteristics of Tidal Stream Turbine," Energies, MDPI, vol. 10(12), pages 1-11, December.
    19. Lewis, M. & Neill, S.P. & Robins, P. & Hashemi, M.R. & Ward, S., 2017. "Characteristics of the velocity profile at tidal-stream energy sites," Renewable Energy, Elsevier, vol. 114(PA), pages 258-272.
    20. Pinon, Grégory & Mycek, Paul & Germain, Grégory & Rivoalen, Elie, 2012. "Numerical simulation of the wake of marine current turbines with a particle method," Renewable Energy, Elsevier, vol. 46(C), pages 111-126.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:48:y:2012:i:c:p:557-564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.