IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i8p1870-1878.html
   My bibliography  Save this article

Optimal site matching of wind turbine generator: Case study of the Gulf of Suez region in Egypt

Author

Listed:
  • EL-Shimy, M.

Abstract

During the last few years, Egypt has emerged as the leader of wind power in the Middle East and Africa. In the Gulf of Suez region, a continuously expanding large-scale grid-connected wind farm is available at Zafarana site. The Gulf of EL-Zayt site in the Gulf of Suez region is now under extensive studies related to wind power projects such as feasibility and bird migration studies. Therefore, the Gulf of Suez region is considered in this paper for optimal site matching of wind turbine generator (WTG). This paper treats the problem of site matching of WTG through improved formulation of the capacity factor. Such factor is estimated based on Weibull PDF and an accurate model for the WTG output-power-curve. Ornithological, martial, and other limitations placed on WTG hub heights in the Gulf of Suez region in Egypt are taken into account. In addition, a MATLAB based program is created to implement the presented technique of optimal site matching of WTG. Based on turbine-performance-index (TPI) maximization, optimal output-power-curve and optimal commercial WTG are determined for each candidate site in the Gulf of Suez region. Long-term performance measurements at Zafarana wind farms in comparison with the results are used to validate the presented technique and the optimality of the results.

Suggested Citation

  • EL-Shimy, M., 2010. "Optimal site matching of wind turbine generator: Case study of the Gulf of Suez region in Egypt," Renewable Energy, Elsevier, vol. 35(8), pages 1870-1878.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:8:p:1870-1878
    DOI: 10.1016/j.renene.2009.12.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014810900562X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.12.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jowder, Fawzi A.L., 2009. "Wind power analysis and site matching of wind turbine generators in Kingdom of Bahrain," Applied Energy, Elsevier, vol. 86(4), pages 538-545, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shafiqur Rehman & Salman A. Khan & Luai M. Alhems, 2020. "A Rule-Based Fuzzy Logic Methodology for Multi-Criteria Selection of Wind Turbines," Sustainability, MDPI, vol. 12(20), pages 1-21, October.
    2. Bilal, Boudy & Adjallah, Kondo Hloindo & Sava, Alexandre & Yetilmezsoy, Kaan & Ouassaid, Mohammed, 2023. "Wind turbine output power prediction and optimization based on a novel adaptive neuro-fuzzy inference system with the moving window," Energy, Elsevier, vol. 263(PE).
    3. Joselin Herbert, G.M. & Iniyan, S. & Amutha, D., 2014. "A review of technical issues on the development of wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 619-641.
    4. Arias-Rosales, Andrés & Osorio-Gómez, Gilberto, 2018. "Wind turbine selection method based on the statistical analysis of nominal specifications for estimating the cost of energy," Applied Energy, Elsevier, vol. 228(C), pages 980-998.
    5. Perkin, Samuel & Garrett, Deon & Jensson, Pall, 2015. "Optimal wind turbine selection methodology: A case-study for Búrfell, Iceland," Renewable Energy, Elsevier, vol. 75(C), pages 165-172.
    6. Shafiqur Rehman & Salman A. Khan, 2016. "Fuzzy Logic Based Multi-Criteria Wind Turbine Selection Strategy—A Case Study of Qassim, Saudi Arabia," Energies, MDPI, vol. 9(11), pages 1-26, October.
    7. Carrillo, C. & Obando Montaño, A.F. & Cidrás, J. & Díaz-Dorado, E., 2013. "Review of power curve modelling for wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 572-581.
    8. Wang, Jianzhou & Hu, Jianming & Ma, Kailiang, 2016. "Wind speed probability distribution estimation and wind energy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 881-899.
    9. Dawn, Subhojit & Tiwari, Prashant Kumar & Goswami, Arup Kumar, 2019. "An approach for long term economic operations of competitive power market by optimal combined scheduling of wind turbines and FACTS controllers," Energy, Elsevier, vol. 181(C), pages 709-723.
    10. Jun, Dong & Tian-tian, Feng & Yi-sheng, Yang & Yu, Ma, 2014. "Macro-site selection of wind/solar hybrid power station based on ELECTRE-II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 194-204.
    11. Giallanza, A. & Porretto, M. & Cannizzaro, L. & Marannano, G., 2017. "Analysis of the maximization of wind turbine energy yield using a continuously variable transmission system," Renewable Energy, Elsevier, vol. 102(PB), pages 481-486.
    12. Esmaieli, M. & Ahmadian, M., 2018. "The effect of research and development incentive on wind power investment, a system dynamics approach," Renewable Energy, Elsevier, vol. 126(C), pages 765-773.
    13. Abbes, Mohamed & Belhadj, Jamel, 2012. "Wind resource estimation and wind park design in El-Kef region, Tunisia," Energy, Elsevier, vol. 40(1), pages 348-357.
    14. Dawn, Subhojit & Tiwari, Prashant Kumar & Goswami, Arup Kumar, 2017. "An approach for efficient assessment of the performance of double auction competitive power market under variable imbalance cost due to high uncertain wind penetration," Renewable Energy, Elsevier, vol. 108(C), pages 230-243.
    15. Belabes, B. & Youcefi, A. & Guerri, O. & Djamai, M. & Kaabeche, A., 2015. "Evaluation of wind energy potential and estimation of cost using wind energy turbines for electricity generation in north of Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1245-1255.
    16. Qin, Yuxiao & Liu, Pei & Li, Zheng, 2022. "Multi-timescale hierarchical scheduling of an integrated energy system considering system inertia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    17. Siyavash Filom & Soheil Radfar & Roozbeh Panahi & Erfan Amini & Mehdi Neshat, 2021. "Exploring Wind Energy Potential as a Driver of Sustainable Development in the Southern Coasts of Iran: The Importance of Wind Speed Statistical Distribution Model," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    18. A. G. Olabi & Tabbi Wilberforce & Khaled Elsaid & Tareq Salameh & Enas Taha Sayed & Khaled Saleh Husain & Mohammad Ali Abdelkareem, 2021. "Selection Guidelines for Wind Energy Technologies," Energies, MDPI, vol. 14(11), pages 1-34, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Araujo Lima, Laerte & Bezerra Filho, Celso Rosendo, 2010. "Wind energy assessment and wind farm simulation in Triunfo – Pernambuco, Brazil," Renewable Energy, Elsevier, vol. 35(12), pages 2705-2713.
    2. Ohunakin, Olayinka S., 2011. "Wind resources in North-East geopolitical zone, Nigeria: An assessment of the monthly and seasonal characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1977-1987, May.
    3. Akdag, Seyit Ahmet & Güler, Önder, 2010. "Evaluation of wind energy investment interest and electricity generation cost analysis for Turkey," Applied Energy, Elsevier, vol. 87(8), pages 2574-2580, August.
    4. Olgun Aydin & Bartłomiej Igliński & Krzysztof Krukowski & Marek Siemiński, 2022. "Analyzing Wind Energy Potential Using Efficient Global Optimization: A Case Study for the City Gdańsk in Poland," Energies, MDPI, vol. 15(9), pages 1-22, April.
    5. Xydis, G. & Koroneos, C. & Loizidou, M., 2009. "Exergy analysis in a wind speed prognostic model as a wind farm sitting selection tool: A case study in Southern Greece," Applied Energy, Elsevier, vol. 86(11), pages 2411-2420, November.
    6. Mostafaeipour, Ali & Jadidi, Mohsen & Mohammadi, Kasra & Sedaghat, Ahmad, 2014. "An analysis of wind energy potential and economic evaluation in Zahedan, Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 641-650.
    7. Celik, Ali N., 2011. "Review of Turkey's current energy status: A case study for wind energy potential of Çanakkale province," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2743-2749, August.
    8. Chang, Tian-Pau & Ko, Hong-Hsi & Liu, Feng-Jiao & Chen, Pai-Hsun & Chang, Ying-Pin & Liang, Ying-Hsin & Jang, Horng-Yuan & Lin, Tsung-Chi & Chen, Yi-Hwa, 2012. "Fractal dimension of wind speed time series," Applied Energy, Elsevier, vol. 93(C), pages 742-749.
    9. Liu, Feng-Jiao & Chen, Pai-Hsun & Kuo, Shyi-Shiun & Su, De-Chuan & Chang, Tian-Pau & Yu, Yu-Hua & Lin, Tsung-Chi, 2011. "Wind characterization analysis incorporating genetic algorithm: A case study in Taiwan Strait," Energy, Elsevier, vol. 36(5), pages 2611-2619.
    10. Deep, Sneh & Sarkar, Arnab & Ghawat, Mayur & Rajak, Manoj Kumar, 2020. "Estimation of the wind energy potential for coastal locations in India using the Weibull model," Renewable Energy, Elsevier, vol. 161(C), pages 319-339.
    11. Chang, Tian-Pau & Liu, Feng-Jiao & Ko, Hong-Hsi & Cheng, Shih-Ping & Sun, Li-Chung & Kuo, Shye-Chorng, 2014. "Comparative analysis on power curve models of wind turbine generator in estimating capacity factor," Energy, Elsevier, vol. 73(C), pages 88-95.
    12. Liu, Feng Jiao & Chang, Tian Pau, 2011. "Validity analysis of maximum entropy distribution based on different moment constraints for wind energy assessment," Energy, Elsevier, vol. 36(3), pages 1820-1826.
    13. El Alimi, Souheil & Maatallah, Taher & Dahmouni, Anouar Wajdi & Ben Nasrallah, Sassi, 2012. "Modeling and investigation of the wind resource in the gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5466-5478.
    14. Duca, Victor E.L.A. & Fonseca, Thaís C.O. & Cyrino Oliveira, Fernando Luiz, 2023. "An overview of non-Gaussian state-space models for wind speed data," Energy, Elsevier, vol. 266(C).
    15. Ohunakin, Olayinka S., 2011. "Assessment of wind energy resources for electricity generation using WECS in North-Central region, Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1968-1976, May.
    16. Mostafaeipour, Ali, 2010. "Feasibility study of harnessing wind energy for turbine installation in province of Yazd in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 93-111, January.
    17. Akdağ, Seyit Ahmet & Güler, Önder, 2018. "Alternative Moment Method for wind energy potential and turbine energy output estimation," Renewable Energy, Elsevier, vol. 120(C), pages 69-77.
    18. Abul Kalam Azad & Mohammad Golam Rasul & Talal Yusaf, 2014. "Statistical Diagnosis of the Best Weibull Methods for Wind Power Assessment for Agricultural Applications," Energies, MDPI, vol. 7(5), pages 1-30, May.
    19. Li Bai & Pierre Pinson, 2019. "Distributed Reconciliation in Day-Ahead Wind Power Forecasting," Energies, MDPI, vol. 12(6), pages 1-19, March.
    20. Mazhar Hussain Baloch & Dahaman Ishak & Sohaib Tahir Chaudary & Baqir Ali & Ali Asghar Memon & Touqeer Ahmed Jumani, 2019. "Wind Power Integration: An Experimental Investigation for Powering Local Communities," Energies, MDPI, vol. 12(4), pages 1-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:8:p:1870-1878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.