IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v248y2025ics0960148125007529.html

Performance assessment of a system integrating a perovskite/Cu2ZnSn(S,Se)4 tandem solar cell and an elastocaloric cooler for power and cooling cogeneration

Author

Listed:
  • Zhang, Sitao
  • Huang, Yuewu
  • Lu, Zhen

Abstract

In order to overcome the problem of heat produced during the functioning of the perovskite solar cell (PSC) and to further improve the energy conversion efficiency, an innovative full-spectrum solar integrated system is proposed, which integrates and synergizes the perovskite/Cu2ZnSn(S,Se)4 (CZTSSe) based tandem solar cell (TSC), the solar selective absorber (SSA) and the elastocaloric cooler (ECC). By exploiting the complementary bandgaps of PSC and CZTSSe solar cell, the system enhances photon absorption and decreases thermalization losses. Moreover, the ECC device utilizes the elastic thermal effect of shape memory alloys to capture and utilize waste heat, thus enabling full-spectrum solar energy utilization. Considering various irreversible losses, key performance indicators of subsystems and integrated systems are derived by combining theoretical modelling and numerical simulation. In addition, comprehensive parametric investigations are conducted. Findings from numerical computations demonstrate that the peak power output density and the energy efficiency of the integrated system are 262.41 W/m2 and 26.24 %, respectively, which is an improvement of 36.17 % compared to the TSC alone. The achievements of this novel system can provide insights into optimizing solar energy utilization and expanding the practical applications of TSC technology.

Suggested Citation

  • Zhang, Sitao & Huang, Yuewu & Lu, Zhen, 2025. "Performance assessment of a system integrating a perovskite/Cu2ZnSn(S,Se)4 tandem solar cell and an elastocaloric cooler for power and cooling cogeneration," Renewable Energy, Elsevier, vol. 248(C).
  • Handle: RePEc:eee:renene:v:248:y:2025:i:c:s0960148125007529
    DOI: 10.1016/j.renene.2025.123090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125007529
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.123090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Enas Taha Sayed & Abdul Ghani Olabi & Abdul Hai Alami & Ali Radwan & Ayman Mdallal & Ahmed Rezk & Mohammad Ali Abdelkareem, 2023. "Renewable Energy and Energy Storage Systems," Energies, MDPI, vol. 16(3), pages 1-26, February.
    2. Li, Gang & Zhu, Weidong, 2023. "Tidal current energy harvesting technologies: A review of current status and life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    3. Wolfgang Tress & Konrad Domanski & Brian Carlsen & Anand Agarwalla & Essa A. Alharbi & Michael Graetzel & Anders Hagfeldt, 2019. "Performance of perovskite solar cells under simulated temperature-illumination real-world operating conditions," Nature Energy, Nature, vol. 4(7), pages 568-574, July.
    4. Tan, Jianming & Wang, Yao & Xu, Shijie & Liu, Huaican & Qian, Suxin, 2020. "Thermodynamic cycle analysis of heat driven elastocaloric cooling system," Energy, Elsevier, vol. 197(C).
    5. Lu, Zhen & Huang, Yuewu & Zhao, Yonggang, 2023. "Elastocaloric cooler for waste heat recovery from perovskite solar cell with electricity and cooling production," Renewable Energy, Elsevier, vol. 215(C).
    6. Rahman, Abidur & Farrok, Omar & Haque, Md Mejbaul, 2022. "Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    7. Ahmed, Salman & Li, Senji & Li, Zhenpeng & Xiao, Gang & Ma, Tao, 2022. "Enhanced radiative cooling of solar cells by integration with heat pipe," Applied Energy, Elsevier, vol. 308(C).
    8. Zhao, Bin & Lu, Kegui & Hu, Mingke & Liu, Jie & Wu, Lijun & Xu, Chengfeng & Xuan, Qingdong & Pei, Gang, 2022. "Radiative cooling of solar cells with micro-grating photonic cooler," Renewable Energy, Elsevier, vol. 191(C), pages 662-668.
    9. Lorenzi, Bruno & Mariani, Paolo & Reale, Andrea & Di Carlo, Aldo & Chen, Gang & Narducci, Dario, 2021. "Practical development of efficient thermoelectric – Photovoltaic hybrid systems based on wide-gap solar cells," Applied Energy, Elsevier, vol. 300(C).
    10. Zhao, Yulong & Lu, Mingjie & Li, Yanzhe & Ge, Minghui & Xie, Liyao & Liu, Liansheng, 2021. "Characteristics analysis of an exhaust thermoelectric generator system with heat transfer fluid circulation," Applied Energy, Elsevier, vol. 304(C).
    11. Qian, Suxin & Wang, Yao & Yuan, Lifen & Yu, Jianlin, 2019. "A heat driven elastocaloric cooling system," Energy, Elsevier, vol. 182(C), pages 881-899.
    12. Olabi, A.G. & Abdelkareem, Mohammad Ali, 2022. "Renewable energy and climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    13. Ma, Liuyang & Zhao, Qin & Zhang, Houcheng & Hou, Shujin & Zhao, Jiapei & Wang, Fu & Zhang, Chunfei & Miao, He & Yuan, Jinliang, 2022. "Performance analysis of a concentrated photovoltaic cell-elastocaloric cooler hybrid system for power and cooling cogeneration," Energy, Elsevier, vol. 239(PD).
    14. Zereshkian, Sajjad & Mansoury, Dariush, 2021. "A study on the feasibility of using solar radiation energy and ocean thermal energy conversion to supply electricity for offshore oil and gas fields in the Caspian Sea," Renewable Energy, Elsevier, vol. 163(C), pages 66-77.
    15. Nam Joong Jeon & Jun Hong Noh & Woon Seok Yang & Young Chan Kim & Seungchan Ryu & Jangwon Seo & Sang Il Seok, 2015. "Compositional engineering of perovskite materials for high-performance solar cells," Nature, Nature, vol. 517(7535), pages 476-480, January.
    16. Han, Yuan & Lai, Cong & Li, Jiarui & Zhang, Zhufeng & Zhang, Houcheng & Hou, Shujin & Wang, Fu & Zhao, Jiapei & Zhang, Chunfei & Miao, He & Yuan, Jinliang, 2022. "Elastocaloric cooler for waste heat recovery from proton exchange membrane fuel cells," Energy, Elsevier, vol. 238(PA).
    17. Huang, Yuewu & Li, Danyi & Chen, Zhuo, 2022. "Potential analysis of a system hybridizing dye-sensitized solar cell with thermally regenerative electrochemical devices," Energy, Elsevier, vol. 260(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Zhen & Huang, Yuewu & Zhao, Yonggang, 2023. "Elastocaloric cooler for waste heat recovery from perovskite solar cell with electricity and cooling production," Renewable Energy, Elsevier, vol. 215(C).
    2. Zhao, Qin & Li, Pengcheng & Zhang, Houcheng, 2024. "Dually boosting the performance of photovoltaic module via integrating elastocaloric cooler," Energy, Elsevier, vol. 295(C).
    3. Žiga Ahčin & Parham Kabirifar & Luka Porenta & Miha Brojan & Jaka Tušek, 2022. "Numerical Modeling of Shell-and-Tube-like Elastocaloric Regenerator," Energies, MDPI, vol. 15(23), pages 1-28, December.
    4. Ma, Liuyang & Zhao, Qin & Zhang, Houcheng & Hou, Shujin & Zhao, Jiapei & Wang, Fu & Zhang, Chunfei & Miao, He & Yuan, Jinliang, 2022. "Performance analysis of a concentrated photovoltaic cell-elastocaloric cooler hybrid system for power and cooling cogeneration," Energy, Elsevier, vol. 239(PD).
    5. Han, Yuan & Zhang, Houcheng, 2022. "Potentiality of elastocaloric cooling system for high-temperature proton exchange membrane fuel cell waste heat harvesting," Renewable Energy, Elsevier, vol. 200(C), pages 1166-1179.
    6. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng & Li, Yunhai, 2023. "Mathematical and experimental investigation about the dual-source heat pump integrating low concentrated photovoltaic and finned-tube exchanger," Energy, Elsevier, vol. 263(PE).
    7. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    8. Qu, Liqiong & Huang, Yuewu & Yan, Lu & Wang, Qinger, 2025. "Enhanced solar energy utilization in a hybrid system integrating tandem solar cell and thermally regenerative electrochemical devices," Renewable Energy, Elsevier, vol. 252(C).
    9. Zhao, Bin & Liu, Jie & Hu, Mingke & Ao, Xianze & Li, Lanxin & Xuan, Qingdong & Pei, Gang, 2023. "Performance analysis of a broadband selective absorber/emitter for hybrid utilization of solar thermal and radiative cooling," Renewable Energy, Elsevier, vol. 205(C), pages 763-771.
    10. Huang, Maoquan & Ren, Xingjie & Tang, G.H. & Sun, Qie & Du, Mu, 2024. "Feasibility of realizing photothermal, photovoltaic, and radiative cooling with a flexible structure," Renewable Energy, Elsevier, vol. 236(C).
    11. Shariatinia, Zahra, 2020. "Recent progress in development of diverse kinds of hole transport materials for the perovskite solar cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    12. Wang, Gongbo & Xu, Tianyi & Yang, Ming & Niu, Wendong, 2025. "Review on renewable energy systems of unmanned marine vehicles and guidance for energy selection," Renewable and Sustainable Energy Reviews, Elsevier, vol. 224(C).
    13. Mohamed Ismail, Kamal Batcha & Arun Kumar, Manoharan & Mahalingam, Shanmugam & Jayavel, Ramasamy & Arivanandhan, Mukannan & Kim, Junghwan, 2025. "Conducting polymer based electrodes in metal-ion batteries: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 222(C).
    14. Yiliang Wang & Yifei Yang & Sichen Tao & Lianzhi Qi & Hao Shen, 2025. "A Reinforcement Learning-Assisted Fractional-Order Differential Evolution for Solving Wind Farm Layout Optimization Problems," Mathematics, MDPI, vol. 13(18), pages 1-34, September.
    15. Zhao, Qin & Li, Jianming & Zhang, Houcheng, 2024. "Synergizing perovskite solar cell and thermoelectric generator for broad-spectrum utilization: Model updating, performance assessment and optimization," Energy, Elsevier, vol. 289(C).
    16. Han, Yuan & Lai, Cong & Li, Jiarui & Zhang, Zhufeng & Zhang, Houcheng & Hou, Shujin & Wang, Fu & Zhao, Jiapei & Zhang, Chunfei & Miao, He & Yuan, Jinliang, 2022. "Elastocaloric cooler for waste heat recovery from proton exchange membrane fuel cells," Energy, Elsevier, vol. 238(PA).
    17. Gong, Quan & Lu, Lin & Chen, Jianheng, 2024. "Progress in radiative cooling materials for urban skin: Achievements in scalability, durability, color modulation, and intelligent thermal regulation," Renewable Energy, Elsevier, vol. 237(PB).
    18. Qian, Suxin & Wang, Yao & Xu, Shijie & Chen, Yanliang & Yuan, Lifen & Yu, Jianlin, 2021. "Cascade utilization of low-grade thermal energy by coupled elastocaloric power and cooling cycle," Applied Energy, Elsevier, vol. 298(C).
    19. Gao, Yuanzhi & Chen, Bo & Wu, Dongxu & Dai, Zhaofeng & Wang, Changling & Zhang, Xiaosong, 2022. "Comparative study of various solar power generation systems integrated with nanofluid-flat heat pipe," Applied Energy, Elsevier, vol. 327(C).
    20. Huang, Jianying & Xiang, Huimin & Ran, Ran & Zhou, Wei & Wang, Wei & Shao, Zongping, 2024. "Fundamental understanding in the performance-limiting factors of Cs2AgBiBr6-based perovskite photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:248:y:2025:i:c:s0960148125007529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.