IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v246y2025ics0960148125005968.html
   My bibliography  Save this article

Optimal coordinated design of building mix ratios and energy systems under uncertainty

Author

Listed:
  • Xie, Yujie
  • Li, Zhengrong
  • Jiang, Yating
  • Wang, Heyu
  • Johnson, Brian C.
  • Zhu, Han

Abstract

As renewable energy production surges, traditional load-leveling strategies for stabilizing terminal loads during planning have shown significant limitations, particularly in the face of uncertainties within integrated energy systems (IES) that can diminish energy efficiency. This study introduces a pioneering two-stage robustness model for IES configuration, offering a comprehensive analysis of how terminal load affects system performance by varying the mix of building types in a region. It uniquely assesses the simultaneous impact of thermal, cooling, and electricity storage under various uncertainties, shedding light on how regional building composition influences the economic viability of energy systems. Findings indicate that uncertainties in renewable energy and demand drive up investment costs, with each 6-unit increment in the robustness parameter increasing total costs by 3.7–4.9 %. The study identifies office-centric areas as optimal for IES implementation and residential areas as less favorable. It also suggests that with an increasing gas-to-electricity price ratio, there should be a strategic increase in energy storage installations, prioritizing thermal/cold energy storage (T/CES) given current pricing. The study concludes with regression models that facilitate expedited system design and feasibility assessments, providing valuable insights for optimizing IES under diverse uncertainties and identifying cost-effective scenarios.

Suggested Citation

  • Xie, Yujie & Li, Zhengrong & Jiang, Yating & Wang, Heyu & Johnson, Brian C. & Zhu, Han, 2025. "Optimal coordinated design of building mix ratios and energy systems under uncertainty," Renewable Energy, Elsevier, vol. 246(C).
  • Handle: RePEc:eee:renene:v:246:y:2025:i:c:s0960148125005968
    DOI: 10.1016/j.renene.2025.122934
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125005968
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122934?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Jiazhu & Yi, Yuqin, 2023. "Multi-microgrid low-carbon economy operation strategy considering both source and load uncertainty: A Nash bargaining approach," Energy, Elsevier, vol. 263(PB).
    2. Chow, T. T. & Chan, Apple L. S. & Song, C. L., 2004. "Building-mix optimization in district cooling system implementation," Applied Energy, Elsevier, vol. 77(1), pages 1-13, January.
    3. Zhang, Chaoyi & Jiao, Zaibin & Liu, Junshan & Ning, Keer, 2023. "Robust planning and economic analysis of park-level integrated energy system considering photovoltaic/thermal equipment," Applied Energy, Elsevier, vol. 348(C).
    4. Wu, Min & Xu, Jiazhu & Zeng, Linjun & Li, Chang & Liu, Yuxing & Yi, Yuqin & Wen, Ming & Jiang, Zhuohan, 2022. "Two-stage robust optimization model for park integrated energy system based on dynamic programming," Applied Energy, Elsevier, vol. 308(C).
    5. Li, Hangxin & Wang, Shengwei, 2020. "Coordinated robust optimal design of building envelope and energy systems for zero/low energy buildings considering uncertainties," Applied Energy, Elsevier, vol. 265(C).
    6. Manduleli Alfred Mquqwana & Senthil Krishnamurthy, 2024. "Particle Swarm Optimization for an Optimal Hybrid Renewable Energy Microgrid System under Uncertainty," Energies, MDPI, vol. 17(2), pages 1-21, January.
    7. Ren, Hongbo & Jiang, Zipei & Wu, Qiong & Li, Qifen & Lv, Hang, 2023. "Optimal planning of an economic and resilient district integrated energy system considering renewable energy uncertainty and demand response under natural disasters," Energy, Elsevier, vol. 277(C).
    8. Davide Burgalassi & Tommaso Luzzati, 2015. "Urban spatial structure and environmental emissions: a survey of the literature and some empirical evidence for Italian NUTS-3 regions," Discussion Papers 2015/199, Dipartimento di Economia e Management (DEM), University of Pisa, Pisa, Italy.
    9. Zhang, Y.Q. & Chen, J.J. & Wang, Y.X. & Feng, L., 2024. "Enhancing resilience of agricultural microgrid through electricity–heat–water based multi-energy hub considering irradiation intensity uncertainty," Renewable Energy, Elsevier, vol. 220(C).
    10. Gao, Jianwei & Meng, Qichen & Liu, Jiangtao & Wang, Ziying, 2024. "Thermoelectric optimization of integrated energy system considering wind-photovoltaic uncertainty, two-stage power-to-gas and ladder-type carbon trading," Renewable Energy, Elsevier, vol. 221(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuan, Ang & Sun, Yingfei & Liu, Zhengguang & Zheng, Peijun & Peng, Weike, 2025. "An ADMM-based tripartite distributed planning approach in integrated electricity and natural gas system," Applied Energy, Elsevier, vol. 388(C).
    2. Wang, Huiyuan & Jia, Chaoyu & Jia, Hongjie & Mu, Yunfei & Xu, Xiandong & Yu, Xiaodan, 2025. "A planning method for park-level integrated energy system based on system integration theory," Applied Energy, Elsevier, vol. 388(C).
    3. Yun Chen & Yunhao Zhao & Xinghao Zhang & Ying Wang & Rongyao Mi & Junxiao Song & Zhiguo Hao & Chuanbo Xu, 2025. "A Two-Stage Robust Optimization Strategy for Long-Term Energy Storage and Cascaded Utilization of Cold and Heat Energy in Peer-to-Peer Electricity Energy Trading," Energies, MDPI, vol. 18(2), pages 1-26, January.
    4. Hua, Lin & Junjie, Xia & Xiang, Gao & Lei, Zheng & Dengwei, Jing & Zhang, Xiongwen & Liejin, Guo, 2024. "Scenario-based stochastic optimization on the variability of solar and wind for component sizing of integrated energy systems," Renewable Energy, Elsevier, vol. 237(PA).
    5. Zhang, Zhonglian & Yang, Xiaohui & Li, Moxuan & Deng, Fuwei & Xiao, Riying & Mei, Linghao & Hu, Zecheng, 2023. "Optimal configuration of improved dynamic carbon neutral energy systems based on hybrid energy storage and market incentives," Energy, Elsevier, vol. 284(C).
    6. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    7. Zhang, Boqun & Wang, Yuanfeng & Pan, Lei & Guo, Xiaohui & Liu, Yinshan & Shi, Chengcheng & Xue, Shaoqin & Wang, Liping & Chang, Xinlei & Fan, Lei, 2025. "Net zero carbon park planning framework: Methodology, application, and economic feasibility analysis," Energy, Elsevier, vol. 325(C).
    8. Yutong Zhao & Shuang Zeng & Yifeng Ding & Lin Ma & Zhao Wang & Anqi Liang & Hongbo Ren, 2024. "Cost–Benefit Analysis of Distributed Energy Systems Considering the Monetization of Indirect Benefits," Sustainability, MDPI, vol. 16(2), pages 1-13, January.
    9. Xu Yang & Xuan Zou & Ming Li & Zeyu Wang, 2024. "The Decarbonization Effect of the Urban Polycentric Structure: Empirical Evidence from China," Land, MDPI, vol. 13(2), pages 1-17, February.
    10. Lohwasser, Johannes & Bolognesi, Thomas & Schaffer, Axel, 2025. "Impacts of population, affluence and urbanization on local air pollution and land transformation – A regional STIRPAT analysis for German districts," Ecological Economics, Elsevier, vol. 227(C).
    11. Liu Yang & Yuanqing Wang & Yujun Lian & Zhongming Guo & Yuanyuan Liu & Zhouhao Wu & Tieyue Zhang, 2022. "Key Factors, Planning Strategy and Policy for Low-Carbon Transport Development in Developing Cities of China," IJERPH, MDPI, vol. 19(21), pages 1-14, October.
    12. Denant-Boemont, Laurent & Gaigné, Carl & Gaté, Romain, 2018. "Urban spatial structure, transport-related emissions and welfare," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 29-45.
    13. Ziming Zhou & Zihao Wang & Yanan Zhang & Xiaoxue Wang, 2024. "Nash Bargaining-Based Coordinated Frequency-Constrained Dispatch for Distribution Networks and Microgrids," Energies, MDPI, vol. 17(22), pages 1-27, November.
    14. Wu, Biao & Zhang, Shaohua & Yuan, Chenxin & Wang, Xian & Wang, Fei & Zhang, Shengqi, 2024. "Cooperative energy and reserve trading strategies for multiple integrated energy systems based on asymmetric nash bargaining theory," Energy, Elsevier, vol. 313(C).
    15. Ge, Haotian & Zhu, Yu & Zhong, Jiuming & Wu, Liang, 2024. "Day-ahead optimization for smart energy management of multi-microgrid using a stochastic-robust model," Energy, Elsevier, vol. 313(C).
    16. Zheng Shi & Lu Yan & Yingying Hu & Yao Wang & Wenping Qin & Yan Liang & Haibo Zhao & Yongming Jing & Jiaojiao Deng & Zhi Zhang, 2024. "Optimization of Operation Strategy of Multi-Islanding Microgrid Based on Double-Layer Objective," Energies, MDPI, vol. 17(18), pages 1-20, September.
    17. Zheng, Senlin & Qiu, Zining & He, Caiwei & Wang, Xianling & Wang, Xupeng & Wang, Zhangyuan & Zhao, Xudong & Shittu, Samson, 2022. "Research on heat transfer mechanism and performance of a novel adaptive enclosure structure based on micro-channel heat pipe," Energy, Elsevier, vol. 254(PB).
    18. Li, Yiran & Chang, Weiguang & Yang, Qiang, 2025. "Deep reinforcement learning based hierarchical energy management for virtual power plant with aggregated multiple heterogeneous microgrids," Applied Energy, Elsevier, vol. 382(C).
    19. Ge, Gaoming & Xiao, Fu & Xu, Xinhua, 2011. "Model-based optimal control of a dedicated outdoor air-chilled ceiling system using liquid desiccant and membrane-based total heat recovery," Applied Energy, Elsevier, vol. 88(11), pages 4180-4190.
    20. Hu, Chunbin & Wang, Honglei & Li, Chengjiang & Yuan, Xufeng, 2025. "Multi-microgrid cooperative modeling based on power router and time-space interconnection scheduling strategy," Energy, Elsevier, vol. 320(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:246:y:2025:i:c:s0960148125005968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.