IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v244y2025ics0960148125003301.html
   My bibliography  Save this article

Dynamic rolling horizon optimization for network-constrained V2X value stacking of electric vehicles under uncertainties

Author

Listed:
  • Jiang, Canchen
  • Liebman, Ariel
  • Jie, Bo
  • Wang, Hao

Abstract

Electric vehicle (EV) coordination can provide significant benefits through vehicle-to-everything (V2X) by interacting with the grid, buildings, and other EVs. This work aims to develop a V2X value-stacking framework, including vehicle-to-building (V2B), vehicle-to-grid (V2G), and energy trading, to maximize economic benefits for residential communities while maintaining distribution voltage. This work also seeks to quantify the impact of prediction errors related to building load, renewable energy, and EV arrivals. A dynamic rolling-horizon optimization (RHO) method is employed to leverage multiple revenue streams and maximize the potential of EV coordination. To address energy uncertainties, including hourly local building load, local photovoltaic (PV) generation, and EV arrivals, this work develops a Transformer-based forecasting model named Gated Recurrent Units-Encoder-Temporal Fusion Decoder (GRU-EN-TFD). The simulation results, using real data from Australia’s National Electricity Market, and the Independent System Operators in New England and New York in the US, reveal that V2X value stacking can significantly reduce energy costs. The proposed GRU-EN-TFD model outperforms the benchmark forecast model. Uncertainties in EV arrivals have a more substantial impact on value-stacking performance, highlighting the significance of its accurate forecast. This work provides new insights into the dynamic interactions among residential communities, unlocking the full potential of EV batteries.

Suggested Citation

  • Jiang, Canchen & Liebman, Ariel & Jie, Bo & Wang, Hao, 2025. "Dynamic rolling horizon optimization for network-constrained V2X value stacking of electric vehicles under uncertainties," Renewable Energy, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:renene:v:244:y:2025:i:c:s0960148125003301
    DOI: 10.1016/j.renene.2025.122668
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125003301
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122668?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Su, Jun & Lie, T.T. & Zamora, Ramon, 2020. "A rolling horizon scheduling of aggregated electric vehicles charging under the electricity exchange market," Applied Energy, Elsevier, vol. 275(C).
    2. Zheng, Peijun & Zhou, Heng & Liu, Jiang & Nakanishi, Yosuke, 2023. "Interpretable building energy consumption forecasting using spectral clustering algorithm and temporal fusion transformers architecture," Applied Energy, Elsevier, vol. 349(C).
    3. Thompson, Andrew W. & Perez, Yannick, 2020. "Vehicle-to-Everything (V2X) energy services, value streams, and regulatory policy implications," Energy Policy, Elsevier, vol. 137(C).
    4. Zaneti, Letícia A.L. & Arias, Nataly Bañol & de Almeida, Madson C. & Rider, Marcos J., 2022. "Sustainable charging schedule of electric buses in a University Campus: A rolling horizon approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Li, Yinan & Yang, Wentao & He, Ping & Chen, Chang & Wang, Xiaonan, 2019. "Design and management of a distributed hybrid energy system through smart contract and blockchain," Applied Energy, Elsevier, vol. 248(C), pages 390-405.
    6. Hoque, Md Murshadul & Khorasany, Mohsen & Azim, M. Imran & Razzaghi, Reza & Jalili, Mahdi, 2024. "A framework for prosumer-centric peer-to-peer energy trading using network-secure export–import limits," Applied Energy, Elsevier, vol. 361(C).
    7. Wu, Chuanshen & Gao, Shan & Liu, Yu & Song, Tiancheng E. & Han, Haiteng, 2021. "A model predictive control approach in microgrid considering multi-uncertainty of electric vehicles," Renewable Energy, Elsevier, vol. 163(C), pages 1385-1396.
    8. Sagaria, Shemin & van der Kam, Mart & Boström, Tobias, 2025. "Vehicle-to-grid impact on battery degradation and estimation of V2G economic compensation," Applied Energy, Elsevier, vol. 377(PB).
    9. Kong, Yan & Xu, Nan & Liu, Qiao & Sui, Yan & Jia, Yifan, 2024. "Variable horizon-based predictive energy management strategy for plug-in hybrid electric vehicles and determination of a suitable predictive horizon," Energy, Elsevier, vol. 294(C).
    10. Moradi Amani, A. & Sajjadi, S.S. & Al Khafaf, N. & Song, H. & Jalili, M. & Yu, X. & Meegahapola, L. & McTaggart, P., 2023. "Technology balancing for reliable EV uptake in distribution grids: An Australian case study," Renewable Energy, Elsevier, vol. 206(C), pages 939-948.
    11. Islam, Shirazul & Iqbal, Atif & Marzband, Mousa & Khan, Irfan & Al-Wahedi, Abdullah M.A.B., 2022. "State-of-the-art vehicle-to-everything mode of operation of electric vehicles and its future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    12. Wang, Shuangxin & Shi, Jiarong & Yang, Wei & Yin, Qingyan, 2024. "High and low frequency wind power prediction based on Transformer and BiGRU-Attention," Energy, Elsevier, vol. 288(C).
    13. Nimalsiri, Nanduni I. & Ratnam, Elizabeth L. & Mediwaththe, Chathurika P. & Smith, David B. & Halgamuge, Saman K., 2021. "Coordinated charging and discharging control of electric vehicles to manage supply voltages in distribution networks: Assessing the customer benefit," Applied Energy, Elsevier, vol. 291(C).
    14. Li, Ruiqi & Ren, Hongbo & Wu, Qiong & Li, Qifen & Gao, Weijun, 2024. "Cooperative economic dispatch of EV-HV coupled electric-hydrogen integrated energy system considering V2G response and carbon trading," Renewable Energy, Elsevier, vol. 227(C).
    15. Luo, Jianing & Yuan, Yanping & Joybari, Mahmood Mastani & Cao, Xiaoling, 2024. "Development of a prediction-based scheduling control strategy with V2B mode for PV-building-EV integrated systems," Renewable Energy, Elsevier, vol. 224(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming, Fangzhu & Gao, Feng & Liu, Kun & Li, Xingqi, 2023. "A constrained DRL-based bi-level coordinated method for large-scale EVs charging," Applied Energy, Elsevier, vol. 331(C).
    2. Zheng, Yanchong & Wang, Yubin & Yang, Qiang, 2023. "Two-phase operation for coordinated charging of electric vehicles in a market environment: From electric vehicle aggregators’ perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    3. Aziz Rachid & Hassan El Fadil & Khawla Gaouzi & Kamal Rachid & Abdellah Lassioui & Zakariae El Idrissi & Mohamed Koundi, 2022. "Electric Vehicle Charging Systems: Comprehensive Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
    4. Francesco Lo Franco & Mattia Ricco & Riccardo Mandrioli & Gabriele Grandi, 2020. "Electric Vehicle Aggregate Power Flow Prediction and Smart Charging System for Distributed Renewable Energy Self-Consumption Optimization," Energies, MDPI, vol. 13(19), pages 1-25, September.
    5. Guo, Shiliang & Li, Pengpeng & Ma, Kai & Yang, Bo & Yang, Jie, 2022. "Robust energy management for industrial microgrid considering charging and discharging pressure of electric vehicles," Applied Energy, Elsevier, vol. 325(C).
    6. Turki Alsuwian & Aiman Shahid Butt & Arslan Ahmed Amin, 2022. "Smart Grid Cyber Security Enhancement: Challenges and Solutions—A Review," Sustainability, MDPI, vol. 14(21), pages 1-21, October.
    7. Wang, Jianguo & Yuan, Weiru & Zhang, Shude & Cheng, Shun & Han, Lincheng, 2024. "Implementing ultra-short-term wind power forecasting without information leakage through cascade decomposition and attention mechanism," Energy, Elsevier, vol. 312(C).
    8. Sumitkumar, Rathor & Al-Sumaiti, Ameena Saad, 2024. "Shared autonomous electric vehicle: Towards social economy of energy and mobility from power-transportation nexus perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    9. Shi, Shaobo & Ji, Yuehui & Zhu, Lewei & Liu, Junjie & Gao, Xiang & Chen, Hao & Gao, Qiang, 2025. "Interactive optimization of electric vehicles and park integrated energy system driven by low carbon: An incentive mechanism based on Stackelberg game," Energy, Elsevier, vol. 318(C).
    10. Luke, Justin & Ribeiro, Mateus Gheorghe de Castro & Martin, Sonia & Balogun, Emmanuel & Cezar, Gustavo Vianna & Pavone, Marco & Rajagopal, Ram, 2025. "Optimal coordination of electric buses and battery storage for achieving a 24/7 carbon-free electrified fleet," Applied Energy, Elsevier, vol. 377(PC).
    11. Andreas Lenk & Marcus Vogt & Christoph Herrmann, 2024. "An Approach to Predicting Energy Demand Within Automobile Production Using the Temporal Fusion Transformer Model," Energies, MDPI, vol. 18(1), pages 1-34, December.
    12. You, Zhengjie & Lumpp, Sebastian Dirk & Doepfert, Markus & Tzscheutschler, Peter & Goebel, Christoph, 2024. "Leveraging flexibility of residential heat pumps through local energy markets," Applied Energy, Elsevier, vol. 355(C).
    13. Rafiq Asghar & Francesco Riganti Fulginei & Hamid Wadood & Sarmad Saeed, 2023. "A Review of Load Frequency Control Schemes Deployed for Wind-Integrated Power Systems," Sustainability, MDPI, vol. 15(10), pages 1-29, May.
    14. Duan, Sudong & Zhang, Zhonghui & Wang, Zhaojun & Xiong, Xiaoyue & Chen, Xinhan & Que, Xiaoyu, 2025. "A study on mobile charging station combined with integrated energy system: Emphasis on energy dispatch strategy and multi-scenario analysis," Renewable Energy, Elsevier, vol. 239(C).
    15. Zhang, Chaobo & Zhang, Jian & Zhao, Yang & Lu, Jie, 2025. "Automated data-driven building energy load prediction method based on generative pre-trained transformers (GPT)," Energy, Elsevier, vol. 318(C).
    16. Agbotiname Lucky Imoize & Hope Ikoghene Obakhena & Francis Ifeanyi Anyasi & Samarendra Nath Sur, 2022. "A Review of Energy Efficiency and Power Control Schemes in Ultra-Dense Cell-Free Massive MIMO Systems for Sustainable 6G Wireless Communication," Sustainability, MDPI, vol. 14(17), pages 1-38, September.
    17. Dong-Her Shih & Feng-I. Chung & Ting-Wei Wu & Bo-Hao Wang & Ming-Hung Shih, 2024. "Advanced Trans-BiGRU-QA Fusion Model for Atmospheric Mercury Prediction," Mathematics, MDPI, vol. 12(22), pages 1-34, November.
    18. Hosseini Dehshiri, Seyyed Jalaladdin & Amiri, Maghsoud & Hosseini Bamakan, Seyed Mojtaba, 2024. "Evaluating the blockchain technology strategies for reducing renewable energy development risks using a novel integrated decision framework," Energy, Elsevier, vol. 289(C).
    19. Li, Jianfang & Jia, Li & Zhou, Chengyu, 2024. "Probability density function based adaptive ensemble learning with global convergence for wind power prediction," Energy, Elsevier, vol. 312(C).
    20. Mehdinejad, Mehdi & Shayanfar, Heidarali & Mohammadi-Ivatloo, Behnam, 2022. "Decentralized blockchain-based peer-to-peer energy-backed token trading for active prosumers," Energy, Elsevier, vol. 244(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:244:y:2025:i:c:s0960148125003301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.