IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v244y2025ics0960148125002988.html
   My bibliography  Save this article

A MPC-based load frequency control considering wind power intelligent forecasting

Author

Listed:
  • Wang, Pei
  • Guo, Jiang
  • Cheng, Fangjuan
  • Gu, Yifeng
  • Yuan, Fang
  • Zhang, Fangqing

Abstract

Currently, the significant randomness of wind power hampers the stability of the grid system. Furthermore, existing control strategies, which solely rely on current measured wind power output, are inadequate in addressing the rapid and continuous fluctuations of wind power. Based on this, a novel load frequency control (LFC) that combines wind power prediction and model predictive control (MPC) is proposed in this paper. The high-precision wind power forecasts are embedded into the MPC, enabling MPC to develop robust control strategies that flexibly respond to the random variability of wind power. For wind power prediction, an improved Reformer model with inversion and gated linear unit (GiReformer) is constructed, which achieves multi-step predictions of wind power at the microscale. In addition, Laguerre function is introduced in MPC to reduce the computational load, and the settings for frequency constraints, generate rate constraints (GRC), control input constraints and terminal constraints ensures the safe and stable operation of the power grid. According to simulations in a high-proportion hydropower system and a multi-energy and multi-regional interconnected power system, the proposed method alleviates system frequency fluctuations up to 71.88 % and 51.78 %, respectively, compared to the comparative methods. In addition, constraints are well handled by the proposed method.

Suggested Citation

  • Wang, Pei & Guo, Jiang & Cheng, Fangjuan & Gu, Yifeng & Yuan, Fang & Zhang, Fangqing, 2025. "A MPC-based load frequency control considering wind power intelligent forecasting," Renewable Energy, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:renene:v:244:y:2025:i:c:s0960148125002988
    DOI: 10.1016/j.renene.2025.122636
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125002988
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122636?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:244:y:2025:i:c:s0960148125002988. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.