IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v382y2025ics0306261924026357.html
   My bibliography  Save this article

Robust moments-matching load frequency control strategy for cyber–physical power system amid communication time delay

Author

Listed:
  • Deep, Akash Kumar
  • Raja, G. Lloyds
  • Meena, Gagan Deep

Abstract

False data injection (FDI)-type cyber-threats amid significant communication time delay (CTD) is a challenging issue in modern cyber–physical power systems, affecting its frequency stability and performance. The frequency control problem becomes all the more challenging amid power system nonlinearities and renewable energy penetration. To ensure safe and reliable power supply, a simple and robust load frequency control strategy is vital in practice. Hence, a new uni-parametric analytical proportional–integral–derivative (PID) design strategy is suggested for an interconnected dual-area thermal power plant (TPP) with considerable CTD. This method uses the impulse response of the TPP model to obtain the PID parameters, thereby eliminating the requirement for model-order reduction and Pade’s estimate of CTD, which causes serious performance degradation in existing analytical PID designs. The single tuning parameter λ that dictates the performance-robustness trade-off of the present PID design is determined by minimizing the integral of time-weighted absolute error (ITAE), estimated as a function of area control errors of the dual-area TPP. Performance and robustness of the proposed design is compared with its contemporaries by simulating various practical scenarios such as FDI-type cyber attacks, TPP nonlinearities and integration of renewable energy sources (solar and wind). A maximum sensitivity-based robustness study is performed to demonstrate that the proposed design yields frequency stability despite changes in TPP model parameters.

Suggested Citation

  • Deep, Akash Kumar & Raja, G. Lloyds & Meena, Gagan Deep, 2025. "Robust moments-matching load frequency control strategy for cyber–physical power system amid communication time delay," Applied Energy, Elsevier, vol. 382(C).
  • Handle: RePEc:eee:appene:v:382:y:2025:i:c:s0306261924026357
    DOI: 10.1016/j.apenergy.2024.125251
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924026357
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125251?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ansari, Zafar Ayub & Raja, G. Lloyds, 2024. "Enhanced cascaded frequency controller optimized by flow direction algorithm for seaport hybrid microgrid powered by renewable energies," Applied Energy, Elsevier, vol. 374(C).
    2. Shangguan, Xing-Chen & He, Yong & Zhang, Chuan-Ke & Jiang, Lin & Wu, Min, 2022. "Load frequency control of time-delayed power system based on event-triggered communication scheme," Applied Energy, Elsevier, vol. 308(C).
    3. Irfan, Muhammad & Deilami, Sara & Huang, Shujuan & Tahir, Tayyab & Veettil, Binesh Puthen, 2024. "Optimizing load frequency control in microgrid with vehicle-to-grid integration in Australia: Based on an enhanced control approach," Applied Energy, Elsevier, vol. 366(C).
    4. Mishra, Dillip Kumar & Ray, Prakash Kumar & Li, Li & Zhang, Jiangfeng & Hossain, M.J. & Mohanty, Asit, 2022. "Resilient control based frequency regulation scheme of isolated microgrids considering cyber attack and parameter uncertainties," Applied Energy, Elsevier, vol. 306(PA).
    5. Sridhar & Deepak Kumar & G. Lloyds Raja & Sudipta Chakraborty, 2024. "Relocated internal model control based cascade control strategy for stable and unstable systems with delay," International Journal of Systems Science, Taylor & Francis Journals, vol. 55(3), pages 499-516, February.
    6. Amil Daraz & Suheel Abdullah Malik & Athar Waseem & Ahmad Taher Azar & Ihsan Ul Haq & Zahid Ullah & Sheraz Aslam, 2021. "Automatic Generation Control of Multi-Source Interconnected Power System Using FOI-TD Controller," Energies, MDPI, vol. 14(18), pages 1-18, September.
    7. Chen, Chunyu & Cui, Mingjian & Fang, Xin & Ren, Bixing & Chen, Yang, 2020. "Load altering attack-tolerant defense strategy for load frequency control system," Applied Energy, Elsevier, vol. 280(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Wen-Ting & Chen, Guo & Huang, Yuhan, 2022. "Incentive edge-based federated learning for false data injection attack detection on power grid state estimation: A novel mechanism design approach," Applied Energy, Elsevier, vol. 314(C).
    2. Preeti Ranjan Sahu & Kumaraswamy Simhadri & Banaja Mohanty & Prakash Kumar Hota & Almoataz Y. Abdelaziz & Fahad Albalawi & Sherif S. M. Ghoneim & Mahmoud Elsisi, 2023. "Effective Load Frequency Control of Power System with Two-Degree Freedom Tilt-Integral-Derivative Based on Whale Optimization Algorithm," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    3. Tayyab Ali & Suheel Abdullah Malik & Amil Daraz & Muhammad Adeel & Sheraz Aslam & Herodotos Herodotou, 2023. "Load Frequency Control and Automatic Voltage Regulation in Four-Area Interconnected Power Systems Using a Gradient-Based Optimizer," Energies, MDPI, vol. 16(5), pages 1-27, February.
    4. Shangguan, Xing-Chen & He, Yong & Zhang, Chuan-Ke & Jiang, Lin & Wu, Min, 2022. "Load frequency control of time-delayed power system based on event-triggered communication scheme," Applied Energy, Elsevier, vol. 308(C).
    5. Qin, Chao & Zhong, Chongyu & Sun, Bing & Jin, Xiaolong & Zeng, Yuan, 2023. "A tri-level optimal defense method against coordinated cyber-physical attacks considering full substation topology," Applied Energy, Elsevier, vol. 339(C).
    6. Solat, Amirhossein & Gharehpetian, G.B. & Naderi, Mehdi Salay & Anvari-Moghaddam, Amjad, 2024. "On the control of microgrids against cyber-attacks: A review of methods and applications," Applied Energy, Elsevier, vol. 353(PA).
    7. Ding, Zhetong & Chen, Chunyu & Cui, Mingjian & Bi, Wenjun & Chen, Yang & Li, Fangxing, 2021. "Dynamic game-based defensive primary frequency control system considering intelligent attackers," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    8. Lei Yang & Saddam Aziz & Zhenyang Yu, 2025. "Cybersecurity Challenges in PV-Hydrogen Transport Networks: Leveraging Recursive Neural Networks for Resilient Operation," Energies, MDPI, vol. 18(9), pages 1-20, April.
    9. Wang, Xiaobo & Huang, Wentao & Li, Ran & Tai, Nengling & Zong, Ming, 2023. "Frequency-based demand side response considering the discontinuity of the ToU tariff," Applied Energy, Elsevier, vol. 348(C).
    10. Yin, Hao & Ou, Zuhong & Fu, Jiajin & Cai, Yongfeng & Chen, Shun & Meng, Anbo, 2021. "A novel transfer learning approach for wind power prediction based on a serio-parallel deep learning architecture," Energy, Elsevier, vol. 234(C).
    11. Naderi, Mobin & Khayat, Yousef & Shafiee, Qobad & Blaabjerg, Frede & Bevrani, Hassan, 2023. "Dynamic modeling, stability analysis and control of interconnected microgrids: A review," Applied Energy, Elsevier, vol. 334(C).
    12. Wan, Yuyang & Zhang, Hancheng & Hu, Yuanyuan & Wang, Yanbo & Liu, Xueshan & Zhou, Qun & Chen, Zhe, 2024. "A novel energy management framework for retired battery-integrated microgrid with peak shaving and frequency regulation," Energy, Elsevier, vol. 313(C).
    13. Jianguo Ding & Attia Qammar & Zhimin Zhang & Ahmad Karim & Huansheng Ning, 2022. "Cyber Threats to Smart Grids: Review, Taxonomy, Potential Solutions, and Future Directions," Energies, MDPI, vol. 15(18), pages 1-37, September.
    14. Yang, Shaohua & Lao, Keng-Weng & Hui, Hongxun & Su, Jinshuo & Wang, Sheng, 2025. "Secure frequency regulation in power system: A comprehensive defense strategy against FDI, DoS, and latency cyber-attacks," Applied Energy, Elsevier, vol. 379(C).
    15. Jun Qi & Anning Ying & Bohang Zhang & Dan Zhou & Guoqing Weng, 2025. "Distributed Frequency Regulation Method for Power Grids Considering the Delayed Response of Virtual Power Plants," Energies, MDPI, vol. 18(6), pages 1-23, March.
    16. Tayyab Ali & Suheel Abdullah Malik & Amil Daraz & Sheraz Aslam & Tamim Alkhalifah, 2022. "Dandelion Optimizer-Based Combined Automatic Voltage Regulation and Load Frequency Control in a Multi-Area, Multi-Source Interconnected Power System with Nonlinearities," Energies, MDPI, vol. 15(22), pages 1-34, November.
    17. Wu, Jinhui & Yang, Fuwen, 2023. "A dual-driven predictive control for photovoltaic-diesel microgrid secondary frequency regulation," Applied Energy, Elsevier, vol. 334(C).
    18. Mishra, Dillip Kumar & Ghadi, Mojtaba Jabbari & Li, Li & Zhang, Jiangfeng & Hossain, M.J., 2022. "Active distribution system resilience quantification and enhancement through multi-microgrid and mobile energy storage," Applied Energy, Elsevier, vol. 311(C).
    19. Kaleem Ullah & Abdul Basit & Zahid Ullah & Rafiq Asghar & Sheraz Aslam & Ayman Yafoz, 2022. "Line Overload Alleviations in Wind Energy Integrated Power Systems Using Automatic Generation Control," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    20. Désiré D. Rasolomampionona & Michał Połecki & Krzysztof Zagrajek & Wiktor Wróblewski & Marcin Januszewski, 2024. "A Comprehensive Review of Load Frequency Control Technologies," Energies, MDPI, vol. 17(12), pages 1-74, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:382:y:2025:i:c:s0306261924026357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.