IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v389y2025ics0306261925004416.html
   My bibliography  Save this article

Primary frequency regulation performance in hydropower systems: Precise quantification and holistic enhancement under wide-range operation

Author

Listed:
  • Lu, Xueding
  • Li, Chaoshun
  • Chang, Hao
  • Wang, He
  • Zhu, Zhiwei
  • Liu, Dong
  • Tan, Xiaoqiang
  • Xu, Rongli

Abstract

Numerous hydropower units are shifting to wide-range operation (WRO, head variation is over 7 % of the rated head, and power adjustment range is more than 50 % of the rated power.), which increases the risk of failing the primary frequency regulation (PFR) assessments from the power grid. To precisely quantify and holistically enhance the PFR performance. Firstly, a flexible hydro-turbine regulation system (HTRS) simulation platform with modular subsystem switching is established to facilitate various operating conditions and comparative studies. Secondly, Prony identification is introduced to determine the stable range of the complex nonlinear HTRS, which saves more than 90 % calculation time and is more accurate compared to traditional methods. On this basis, the influence of operating conditions and major nonlinear factors on the system stability are analyzed. Finally, the regulation rise time, stable time, and integrated electricity isotropic performance indexes for PFR are designed to quantitatively evaluate the regulating quality and assessment status under WRO, with further integrated optimization of control parameters. Results indicate that the risk of units failing PFR assessments is higher during low-head operation, with the main cause being a decrease in regulation speed. Following optimization, units successfully pass the PFR assessment in all operating conditions, with the three performance indexes improved by an average of 12.1 %, 78.9 %, and 87.8 % under WRO, respectively. This study offers a reliable tool and essential guidance for analyzing and optimizing the regulation performance of hydropower units under WRO.

Suggested Citation

  • Lu, Xueding & Li, Chaoshun & Chang, Hao & Wang, He & Zhu, Zhiwei & Liu, Dong & Tan, Xiaoqiang & Xu, Rongli, 2025. "Primary frequency regulation performance in hydropower systems: Precise quantification and holistic enhancement under wide-range operation," Applied Energy, Elsevier, vol. 389(C).
  • Handle: RePEc:eee:appene:v:389:y:2025:i:c:s0306261925004416
    DOI: 10.1016/j.apenergy.2025.125711
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925004416
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125711?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xudong & Yang, Weijia & Liao, Yiwen & Zhang, Shushu & Zheng, Yang & Zhao, Zhigao & Tang, Maojia & Cheng, Yongguang & Liu, Pan, 2024. "Short-term risk-management for hydro-wind-solar hybrid energy system considering hydropower part-load operating characteristics," Applied Energy, Elsevier, vol. 360(C).
    2. Yang, Weijia & Yang, Jiandong & Zeng, Wei & Tang, Renbo & Hou, Liangyu & Ma, Anting & Zhao, Zhigao & Peng, Yumin, 2019. "Experimental investigation of theoretical stability regions for ultra-low frequency oscillations of hydropower generating systems," Energy, Elsevier, vol. 186(C).
    3. Yu, Xiaodong & Yang, Xiuwei & Yu, Chao & Zhang, Jian & Tian, Yuan, 2021. "Direct approach to optimize PID controller parameters of hydropower plants," Renewable Energy, Elsevier, vol. 173(C), pages 342-350.
    4. Lu, Xueding & Li, Chaoshun & Liu, Dong & Zhu, Zhiwei & Wang, He & Tan, Xiaoqiang & Xu, Rongli, 2024. "Nonlinear damping characteristic analysis of hydropower systems based on a reliable damping quantification method," Renewable Energy, Elsevier, vol. 223(C).
    5. Xu, Rongli & Tan, Xiaoqiang & Wang, He & Zhu, Zhiwei & Lu, Xueding & Li, Chaoshun, 2024. "Stability of hydropower units under full operating conditions considering nonlinear coupling of turbine characteristics," Renewable Energy, Elsevier, vol. 223(C).
    6. Guo, Wencheng & Peng, Zhiyuan, 2019. "Hydropower system operation stability considering the coupling effect of water potential energy in surge tank and power grid," Renewable Energy, Elsevier, vol. 134(C), pages 846-861.
    7. Zhao, Zhigao & Yang, Jiandong & Chung, C.Y. & Yang, Weijia & He, Xianghui & Chen, Man, 2021. "Performance enhancement of pumped storage units for system frequency support based on a novel small signal model," Energy, Elsevier, vol. 234(C).
    8. Xu, Pan & Fu, Wenlong & Lu, Qipeng & Zhang, Shihai & Wang, Renming & Meng, Jiaxin, 2023. "Stability analysis of hydro-turbine governing system with sloping ceiling tailrace tunnel and upstream surge tank considering nonlinear hydro-turbine characteristics," Renewable Energy, Elsevier, vol. 210(C), pages 556-574.
    9. Wang, Zhenni & Wen, Xin & Tan, Qiaofeng & Fang, Guohua & Lei, Xiaohui & Wang, Hao & Yan, Jinyue, 2021. "Potential assessment of large-scale hydro-photovoltaic-wind hybrid systems on a global scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    10. Wang, Fengjuan & Xu, Jiuping & Wang, Qingchun, 2024. "Complementary operation based sizing and scheduling strategy for hybrid hydro-PV-wind generation systems connected to long-distance transmission lines," Applied Energy, Elsevier, vol. 364(C).
    11. Ma, Weichao & Zhao, Zhigao & Yang, Jiebin & Lai, Xu & Liu, Chengpeng & Yang, Jiandong, 2024. "A transient analysis framework for hydropower generating systems under parameter uncertainty by integrating physics-based and data-driven models," Energy, Elsevier, vol. 297(C).
    12. Lai, Xinjie & Li, Chaoshun & Zhou, Jianzhong & Zhang, Yongchuan & Li, Yonggang, 2020. "A multi-objective optimization strategy for the optimal control scheme of pumped hydropower systems under successive load rejections," Applied Energy, Elsevier, vol. 261(C).
    13. Dong, Wenhui & Cao, Zezhou & Zhao, Pengchong & Yang, Zhenbiao & Yuan, Yichen & Zhao, Ziwen & Chen, Diyi & Wu, Yajun & Xu, Beibei & Venkateshkumar, M., 2023. "A segmented optimal PID method to consider both regulation performance and damping characteristic of hydroelectric power system," Renewable Energy, Elsevier, vol. 207(C), pages 1-12.
    14. Shi, Yousong & Zhou, Jianzhong & Guo, Wencheng & Zheng, Yang & Li, Chaoshun & Zhang, Yongchuan, 2022. "Nonlinear dynamic characteristics analysis and adaptive avoid vortex-coordinated optimal control of hydropower units under grid connection," Renewable Energy, Elsevier, vol. 200(C), pages 911-930.
    15. Cong Lv & Yanhe Xu & Xin Wu & Qing Zhang, 2020. "Characteristic Analysis and Optimal Regulation of Primary Frequency Regulation Condition in Low Water Head Area Based on Hydraulic-Mechanical-Electrical Coupling Model of Pumped Storage Unit," Complexity, Hindawi, vol. 2020, pages 1-17, January.
    16. Yu, Xiaodong & Zhang, Jian & Fan, Chengyu & Chen, Sheng, 2016. "Stability analysis of governor-turbine-hydraulic system by state space method and graph theory," Energy, Elsevier, vol. 114(C), pages 613-622.
    17. Zhao, Zhigao & Yang, Jiandong & Huang, Yifan & Yang, Weijia & Ma, Weichao & Hou, Liangyu & Chen, Man, 2021. "Improvement of regulation quality for hydro-dominated power system: quantifying oscillation characteristic and multi-objective optimization," Renewable Energy, Elsevier, vol. 168(C), pages 606-631.
    18. Zhang, Nan & Feng, Chen & Shan, Yahui & Sun, Na & Xue, Xiaoming & Shi, Liping, 2023. "A universal stability quantification method for grid-connected hydropower plant considering FOPI controller and complex nonlinear characteristics based on improved GWO," Renewable Energy, Elsevier, vol. 211(C), pages 874-894.
    19. Yang, Weijia & Norrlund, Per & Chung, Chi Yung & Yang, Jiandong & Lundin, Urban, 2018. "Eigen-analysis of hydraulic-mechanical-electrical coupling mechanism for small signal stability of hydropower plant," Renewable Energy, Elsevier, vol. 115(C), pages 1014-1025.
    20. Lu, Xueding & Li, Chaoshun & Liu, Dong & Zhu, Zhiwei & Tan, Xiaoqiang & Xu, Rongli, 2023. "Comprehensive stability analysis of complex hydropower system under flexible operating conditions based on a fast stability domain solving method," Energy, Elsevier, vol. 274(C).
    21. Chen, Jinbao & Zheng, Yang & Liu, Dong & Du, Yang & Xiao, Zhihuai, 2023. "Quantitative stability analysis of complex nonlinear hydraulic turbine regulation system based on accurate calculation," Applied Energy, Elsevier, vol. 351(C).
    22. Huang, Yifan & Yang, Weijia & Liao, Yiwen & Zhao, Zhigao & Ma, Weichao & Yang, Jiebin & Yang, Jiandong, 2022. "Improved transfer function method for flexible simulation of hydraulic-mechanical-electrical transient processes of hydro-power plants," Renewable Energy, Elsevier, vol. 196(C), pages 390-404.
    23. Yang, Weijia & Norrlund, Per & Bladh, Johan & Yang, Jiandong & Lundin, Urban, 2018. "Hydraulic damping mechanism of low frequency oscillations in power systems: Quantitative analysis using a nonlinear model of hydropower plants," Applied Energy, Elsevier, vol. 212(C), pages 1138-1152.
    24. Liu, Dong & Wang, Xin & Peng, Yunshui & Zhang, Hui & Xiao, Zhihuai & Han, Xiangdong & Malik, O.P., 2020. "Stability analysis of hydropower units under full operating conditions considering turbine nonlinearity," Renewable Energy, Elsevier, vol. 154(C), pages 723-742.
    25. Hassan, Qusay & Nassar, Ahmed K. & Al-Jiboory, Ali Khudhair & Viktor, Patrik & Telba, Ahmad A. & Awwad, Emad Mahrous & Amjad, Ayesha & Fakhruldeen, Hassan Falah & Algburi, Sameer & Mashkoor, Saoud Cha, 2024. "Mapping Europe renewable energy landscape: Insights into solar, wind, hydro, and green hydrogen production," Technology in Society, Elsevier, vol. 77(C).
    26. Fernández-Muñoz, Daniel & Pérez-Díaz, Juan I. & Guisández, Ignacio & Chazarra, Manuel & Fernández-Espina, Álvaro, 2020. "Fast frequency control ancillary services: An international review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Xueding & Li, Chaoshun & Liu, Dong & Wang, He & Zhu, Zhiwei & Ta, Xiaoqiang & Xu, Rongli, 2024. "Correlating analysis and optimization between hydropower system parameters and multi-frequency oscillation characteristics," Energy, Elsevier, vol. 304(C).
    2. Lu, Xueding & Li, Chaoshun & Liu, Dong & Zhu, Zhiwei & Tan, Xiaoqiang & Xu, Rongli, 2023. "Comprehensive stability analysis of complex hydropower system under flexible operating conditions based on a fast stability domain solving method," Energy, Elsevier, vol. 274(C).
    3. Lu, Xueding & Li, Chaoshun & Liu, Dong & Zhu, Zhiwei & Tan, Xiaoqiang, 2022. "Influence of water diversion system topologies and operation scenarios on the damping characteristics of hydropower units under ultra-low frequency oscillations," Energy, Elsevier, vol. 239(PE).
    4. Dong Liu & Xinxu Wei & Jingjing Zhang & Xiao Hu & Lihong Zhang, 2023. "A Parameter Sensitivity Analysis of Hydropower Units under Full Operating Conditions Considering Turbine Nonlinearity," Sustainability, MDPI, vol. 15(15), pages 1-21, July.
    5. Xinran Guo & Yuanchu Cheng & Jiada Wei & Yitian Luo, 2021. "Stability Analysis of Different Regulation Modes of Hydropower Units," Energies, MDPI, vol. 14(7), pages 1-19, March.
    6. Liu, Dong & Li, Chaoshun & Tan, Xiaoqiang & Lu, Xueding & Malik, O.P., 2021. "Damping characteristics analysis of hydropower units under full operating conditions and control parameters: Accurate quantitative evaluation based on refined models," Applied Energy, Elsevier, vol. 292(C).
    7. Ma, Weichao & Zhao, Zhigao & Yang, Jiebin & Lai, Xu & Liu, Chengpeng & Yang, Jiandong, 2024. "A transient analysis framework for hydropower generating systems under parameter uncertainty by integrating physics-based and data-driven models," Energy, Elsevier, vol. 297(C).
    8. Xu, Beibei & Zhang, Jingjing & Egusquiza, Mònica & Chen, Diyi & Li, Feng & Behrens, Paul & Egusquiza, Eduard, 2021. "A review of dynamic models and stability analysis for a hydro-turbine governing system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    9. Shi, Yousong & Zhou, Jianzhong & Guo, Wencheng & Zheng, Yang & Li, Chaoshun & Zhang, Yongchuan, 2022. "Nonlinear dynamic characteristics analysis and adaptive avoid vortex-coordinated optimal control of hydropower units under grid connection," Renewable Energy, Elsevier, vol. 200(C), pages 911-930.
    10. Zhao, Zhigao & Yang, Jiandong & Huang, Yifan & Yang, Weijia & Ma, Weichao & Hou, Liangyu & Chen, Man, 2021. "Improvement of regulation quality for hydro-dominated power system: quantifying oscillation characteristic and multi-objective optimization," Renewable Energy, Elsevier, vol. 168(C), pages 606-631.
    11. Huang, Yifan & Yang, Weijia & Liao, Yiwen & Zhao, Zhigao & Ma, Weichao & Yang, Jiebin & Yang, Jiandong, 2022. "Improved transfer function method for flexible simulation of hydraulic-mechanical-electrical transient processes of hydro-power plants," Renewable Energy, Elsevier, vol. 196(C), pages 390-404.
    12. Dong, Wenhui & Cao, Zezhou & Zhao, Pengchong & Yang, Zhenbiao & Yuan, Yichen & Zhao, Ziwen & Chen, Diyi & Wu, Yajun & Xu, Beibei & Venkateshkumar, M., 2023. "A segmented optimal PID method to consider both regulation performance and damping characteristic of hydroelectric power system," Renewable Energy, Elsevier, vol. 207(C), pages 1-12.
    13. Yu, Xiaodong & Yang, Xiuwei & Yu, Chao & Zhang, Jian & Tian, Yuan, 2021. "Direct approach to optimize PID controller parameters of hydropower plants," Renewable Energy, Elsevier, vol. 173(C), pages 342-350.
    14. Chen, Jinbao & Liu, Shaohua & Wang, Yunhe & Hu, Wenqing & Zou, Yidong & Zheng, Yang & Xiao, Zhihuai, 2024. "Generalized predictive control application scheme for nonlinear hydro-turbine regulation system: Based on a precise novel control structure," Energy, Elsevier, vol. 296(C).
    15. Zhang, Nan & Feng, Chen & Shan, Yahui & Sun, Na & Xue, Xiaoming & Shi, Liping, 2023. "A universal stability quantification method for grid-connected hydropower plant considering FOPI controller and complex nonlinear characteristics based on improved GWO," Renewable Energy, Elsevier, vol. 211(C), pages 874-894.
    16. Ma, Weichao & Yan, Wenjie & Yang, Jiebin & He, Xianghui & Yang, Jiandong & Yang, Weijia, 2022. "Experimental and numerical investigation on head losses of a complex throttled surge tank for refined hydropower plant simulation," Renewable Energy, Elsevier, vol. 186(C), pages 264-279.
    17. Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zhao, Zhigao & Yang, Jiandong, 2023. "Transient analysis of a hydropower plant with a super-long headrace tunnel during load acceptance: Instability mechanism and measurement verification," Energy, Elsevier, vol. 263(PA).
    18. Liu, Yi & Zhang, Jian & Liu, Zhe & Chen, Long & Yu, Xiaodong, 2022. "Surge wave characteristics for hydropower plant with upstream double surge tanks connected in series under small load disturbance," Renewable Energy, Elsevier, vol. 186(C), pages 667-676.
    19. Zhao, Zhigao & Yang, Jiandong & Chung, C.Y. & Yang, Weijia & He, Xianghui & Chen, Man, 2021. "Performance enhancement of pumped storage units for system frequency support based on a novel small signal model," Energy, Elsevier, vol. 234(C).
    20. Liu, Dong & Wang, Xin & Peng, Yunshui & Zhang, Hui & Xiao, Zhihuai & Han, Xiangdong & Malik, O.P., 2020. "Stability analysis of hydropower units under full operating conditions considering turbine nonlinearity," Renewable Energy, Elsevier, vol. 154(C), pages 723-742.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:389:y:2025:i:c:s0306261925004416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.