IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v186y2022icp667-676.html
   My bibliography  Save this article

Surge wave characteristics for hydropower plant with upstream double surge tanks connected in series under small load disturbance

Author

Listed:
  • Liu, Yi
  • Zhang, Jian
  • Liu, Zhe
  • Chen, Long
  • Yu, Xiaodong

Abstract

The surge tanks play a crucial role in moderating the oscillation in hydropower plants after load disturbance. Due to the immense flow inertia in extra-long headrace tunnels, hydropower plants with upstream double surge tanks connected in series (UDSTS) are put forward. This paper aims to study surge wave characteristics in surge tanks, which is of great significance for safe operation. Firstly, the mathematic model of UDSTS system coupled with turbine-governor-penstock (TGP) system is established. Then, the analytical formulas for the frequencies of surge waves are derived, and their rationality is verified as well. The generation mechanism and influencing factors of surge waves are investigated. Finally, the guiding suggestions for actual design are proposed. The results indicate that the formulas have great accuracy. The surge waves in double surge tanks are the superposition of two subwaves (i.e. fundamental wave and interharmonic). The fundamental wave is mainly affected by the long headrace tunnel, cross-sectional areas of both surge tanks. The dominant factors of the interharmonic are the short headrace tunnel length, the cross-sectional area of the surge tank near the turbine. The proposed conclusions for surge wave characteristics can provide theoretical reference for practical applications.

Suggested Citation

  • Liu, Yi & Zhang, Jian & Liu, Zhe & Chen, Long & Yu, Xiaodong, 2022. "Surge wave characteristics for hydropower plant with upstream double surge tanks connected in series under small load disturbance," Renewable Energy, Elsevier, vol. 186(C), pages 667-676.
  • Handle: RePEc:eee:renene:v:186:y:2022:i:c:p:667-676
    DOI: 10.1016/j.renene.2022.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122000040
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiandong Yang & Mingjiang Wang & Chao Wang & Wencheng Guo, 2015. "Linear Modeling and Regulation Quality Analysis for Hydro-Turbine Governing System with an Open Tailrace Channel," Energies, MDPI, vol. 8(10), pages 1-16, October.
    2. Wang, Zhenni & Wen, Xin & Tan, Qiaofeng & Fang, Guohua & Lei, Xiaohui & Wang, Hao & Yan, Jinyue, 2021. "Potential assessment of large-scale hydro-photovoltaic-wind hybrid systems on a global scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    3. Liu, Dong & Li, Chaoshun & Tan, Xiaoqiang & Lu, Xueding & Malik, O.P., 2021. "Damping characteristics analysis of hydropower units under full operating conditions and control parameters: Accurate quantitative evaluation based on refined models," Applied Energy, Elsevier, vol. 292(C).
    4. Wencheng Guo & Daoyi Zhu, 2018. "A Review of the Transient Process and Control for a Hydropower Station with a Super Long Headrace Tunnel," Energies, MDPI, vol. 11(11), pages 1-27, November.
    5. Yu, Xiaodong & Zhang, Jian & Fan, Chengyu & Chen, Sheng, 2016. "Stability analysis of governor-turbine-hydraulic system by state space method and graph theory," Energy, Elsevier, vol. 114(C), pages 613-622.
    6. Rui Cao & Jianjian Shen & Chuntian Cheng & Jian Wang, 2020. "Optimization Model for the Long-Term Operation of an Interprovincial Hydropower Plant Incorporating Peak Shaving Demands," Energies, MDPI, vol. 13(18), pages 1-21, September.
    7. Xu, Beibei & Chen, Diyi & Zhang, Hao & Wang, Feifei, 2015. "Modeling and stability analysis of a fractional-order Francis hydro-turbine governing system," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 50-61.
    8. Saber, Hossein & Mazaheri, Hesam & Ranjbar, Hossein & Moeini-Aghtaie, Moein & Lehtonen, Matti, 2021. "Utilization of in-pipe hydropower renewable energy technology and energy storage systems in mountainous distribution networks," Renewable Energy, Elsevier, vol. 172(C), pages 789-801.
    9. Chang Xu & Dianwei Qian, 2015. "Governor Design for a Hydropower Plant with an Upstream Surge Tank by GA-Based Fuzzy Reduced-Order Sliding Mode," Energies, MDPI, vol. 8(12), pages 1-16, November.
    10. Yang, Weijia & Norrlund, Per & Chung, Chi Yung & Yang, Jiandong & Lundin, Urban, 2018. "Eigen-analysis of hydraulic-mechanical-electrical coupling mechanism for small signal stability of hydropower plant," Renewable Energy, Elsevier, vol. 115(C), pages 1014-1025.
    11. Wang, Xianxun & Mei, Yadong & Kong, Yanjun & Lin, Yuru & Wang, Hao, 2017. "Improved multi-objective model and analysis of the coordinated operation of a hydro-wind-photovoltaic system," Energy, Elsevier, vol. 134(C), pages 813-839.
    12. Yu, Xiaodong & Yang, Xiuwei & Zhang, Jian, 2019. "Stability analysis of hydro-turbine governing system including surge tanks under interconnected operation during small load disturbance," Renewable Energy, Elsevier, vol. 133(C), pages 1426-1435.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Le & Guo, Wencheng, 2022. "Nonlinear hydraulic coupling characteristics and energy conversion mechanism of pipeline - surge tank system of hydropower station with super long headrace tunnel," Renewable Energy, Elsevier, vol. 199(C), pages 1345-1360.
    2. Liu, Yi & Zhang, Jian & Chen, Sheng & Yu, Xiaodong, 2023. "Stability analysis and estimation of domain of attraction for hydropower station with surge tank," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    3. Yi Liu & Xiaodong Yu & Xinlei Guo & Wenlong Zhao & Sheng Chen, 2023. "Operational Stability of Hydropower Plant with Upstream and Downstream Surge Chambers during Small Load Disturbance," Energies, MDPI, vol. 16(11), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Beibei & Zhang, Jingjing & Egusquiza, Mònica & Chen, Diyi & Li, Feng & Behrens, Paul & Egusquiza, Eduard, 2021. "A review of dynamic models and stability analysis for a hydro-turbine governing system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Dong Liu & Xinxu Wei & Jingjing Zhang & Xiao Hu & Lihong Zhang, 2023. "A Parameter Sensitivity Analysis of Hydropower Units under Full Operating Conditions Considering Turbine Nonlinearity," Sustainability, MDPI, vol. 15(15), pages 1-21, July.
    3. Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zhao, Zhigao & Yang, Jiandong, 2023. "Transient analysis of a hydropower plant with a super-long headrace tunnel during load acceptance: Instability mechanism and measurement verification," Energy, Elsevier, vol. 263(PA).
    4. Xinran Guo & Yuanchu Cheng & Jiada Wei & Yitian Luo, 2021. "Stability Analysis of Different Regulation Modes of Hydropower Units," Energies, MDPI, vol. 14(7), pages 1-19, March.
    5. Liu, Dong & Wang, Xin & Peng, Yunshui & Zhang, Hui & Xiao, Zhihuai & Han, Xiangdong & Malik, O.P., 2020. "Stability analysis of hydropower units under full operating conditions considering turbine nonlinearity," Renewable Energy, Elsevier, vol. 154(C), pages 723-742.
    6. Tang, Renbo & Yang, Jiandong & Yang, Weijia & Zou, Jin & Lai, Xu, 2019. "Dynamic regulation characteristics of pumped-storage plants with two generating units sharing common conduits and busbar for balancing variable renewable energy," Renewable Energy, Elsevier, vol. 135(C), pages 1064-1077.
    7. Lu, Xueding & Li, Chaoshun & Liu, Dong & Zhu, Zhiwei & Tan, Xiaoqiang, 2022. "Influence of water diversion system topologies and operation scenarios on the damping characteristics of hydropower units under ultra-low frequency oscillations," Energy, Elsevier, vol. 239(PE).
    8. Liu, Dong & Li, Chaoshun & Tan, Xiaoqiang & Lu, Xueding & Malik, O.P., 2021. "Damping characteristics analysis of hydropower units under full operating conditions and control parameters: Accurate quantitative evaluation based on refined models," Applied Energy, Elsevier, vol. 292(C).
    9. Yu, Xiaodong & Yang, Xiuwei & Zhang, Jian, 2019. "Stability analysis of hydro-turbine governing system including surge tanks under interconnected operation during small load disturbance," Renewable Energy, Elsevier, vol. 133(C), pages 1426-1435.
    10. Yu, Xiaodong & Yang, Xiuwei & Yu, Chao & Zhang, Jian & Tian, Yuan, 2021. "Direct approach to optimize PID controller parameters of hydropower plants," Renewable Energy, Elsevier, vol. 173(C), pages 342-350.
    11. Yi Liu & Xiaodong Yu & Xinlei Guo & Wenlong Zhao & Sheng Chen, 2023. "Operational Stability of Hydropower Plant with Upstream and Downstream Surge Chambers during Small Load Disturbance," Energies, MDPI, vol. 16(11), pages 1-13, June.
    12. Dong, Wenhui & Cao, Zezhou & Zhao, Pengchong & Yang, Zhenbiao & Yuan, Yichen & Zhao, Ziwen & Chen, Diyi & Wu, Yajun & Xu, Beibei & Venkateshkumar, M., 2023. "A segmented optimal PID method to consider both regulation performance and damping characteristic of hydroelectric power system," Renewable Energy, Elsevier, vol. 207(C), pages 1-12.
    13. Wu, Xinyu & Wu, Yiyang & Cheng, Xilong & Cheng, Chuntian & Li, Zehong & Wu, Yongqi, 2023. "A mixed-integer linear programming model for hydro unit commitment considering operation constraint priorities," Renewable Energy, Elsevier, vol. 204(C), pages 507-520.
    14. Tan, Xiaoqiang & Li, Chaoshun & Liu, Dong & Wang, He & Xu, Rongli & Lu, Xueding & Zhu, Zhiwei, 2023. "Multi-time scale model reduction strategy of variable-speed pumped storage unit grid-connected system for small-signal oscillation stability analysis," Renewable Energy, Elsevier, vol. 211(C), pages 985-1009.
    15. Liu, Dong & Li, Chaoshun & Malik, O.P., 2021. "Nonlinear modeling and multi-scale damping characteristics of hydro-turbine regulation systems under complex variable hydraulic and electrical network structures," Applied Energy, Elsevier, vol. 293(C).
    16. Jianzhong Zhou & Zhigao Zhao & Chu Zhang & Chaoshun Li & Yanhe Xu, 2017. "A Real-Time Accurate Model and Its Predictive Fuzzy PID Controller for Pumped Storage Unit via Error Compensation," Energies, MDPI, vol. 11(1), pages 1-24, December.
    17. Zhang, Nan & Feng, Chen & Shan, Yahui & Sun, Na & Xue, Xiaoming & Shi, Liping, 2023. "A universal stability quantification method for grid-connected hydropower plant considering FOPI controller and complex nonlinear characteristics based on improved GWO," Renewable Energy, Elsevier, vol. 211(C), pages 874-894.
    18. Zhao, Zhigao & Yang, Jiandong & Huang, Yifan & Yang, Weijia & Ma, Weichao & Hou, Liangyu & Chen, Man, 2021. "Improvement of regulation quality for hydro-dominated power system: quantifying oscillation characteristic and multi-objective optimization," Renewable Energy, Elsevier, vol. 168(C), pages 606-631.
    19. Huang, Yifan & Yang, Weijia & Liao, Yiwen & Zhao, Zhigao & Ma, Weichao & Yang, Jiebin & Yang, Jiandong, 2022. "Improved transfer function method for flexible simulation of hydraulic-mechanical-electrical transient processes of hydro-power plants," Renewable Energy, Elsevier, vol. 196(C), pages 390-404.
    20. Wencheng Guo & Daoyi Zhu, 2018. "A Review of the Transient Process and Control for a Hydropower Station with a Super Long Headrace Tunnel," Energies, MDPI, vol. 11(11), pages 1-27, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:186:y:2022:i:c:p:667-676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.