IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v210y2023icp556-574.html
   My bibliography  Save this article

Stability analysis of hydro-turbine governing system with sloping ceiling tailrace tunnel and upstream surge tank considering nonlinear hydro-turbine characteristics

Author

Listed:
  • Xu, Pan
  • Fu, Wenlong
  • Lu, Qipeng
  • Zhang, Shihai
  • Wang, Renming
  • Meng, Jiaxin

Abstract

This paper aims to investigate the stability of hydro-turbine governing system (HTGS) with sloping ceiling tailrace tunnel (SCTT) and upstream surge tank (UST) considering nonlinear hydro-turbine characteristics (NHTCs). Firstly, the mathematical model of HTGS is presented based on nonlinear seventh-order state equation, which is verified by example analysis so as to study the stability of HTGS. Subsequently, the effect of HTGS parameters on the stability of the system is investigated with numerical simulation. Finally, the coupling effect mechanism of SCTT and UST on stability under the effect of NHTCs is revealed by using contrastive analysis. The results are summarized as follows: (1) Ta, Kd and Twt perform larger effect on the stability of HTGS, while the influence of F and Twy is mild; (2) the NHTCs are beneficial under negative load disturbance and unfavorable under positive load disturbance for the stability and dynamic performance of HTGS; (3) the coupling effect of SCTT and UST outperforms the results of SCTT or UST alone under all load disturbances; (4) the incorporation of UST to the established model plays a certain role in stability compensation, while the introduction of SCTT not only improves the stability but also achieves smaller amplitude and lower frequency.

Suggested Citation

  • Xu, Pan & Fu, Wenlong & Lu, Qipeng & Zhang, Shihai & Wang, Renming & Meng, Jiaxin, 2023. "Stability analysis of hydro-turbine governing system with sloping ceiling tailrace tunnel and upstream surge tank considering nonlinear hydro-turbine characteristics," Renewable Energy, Elsevier, vol. 210(C), pages 556-574.
  • Handle: RePEc:eee:renene:v:210:y:2023:i:c:p:556-574
    DOI: 10.1016/j.renene.2023.04.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123004780
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.04.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Yang & Guo, Wencheng, 2021. "Multi-frequency dynamic performance of hydropower plant under coupling effect of power grid and turbine regulating system with surge tank," Renewable Energy, Elsevier, vol. 171(C), pages 557-581.
    2. Zhu, Daoyi & Guo, Wencheng, 2019. "Critical sectional area of surge chamber considering nonlinearity of head loss of diversion tunnel and steady output of turbine," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 165-172.
    3. Guo, Wencheng & Zhu, Daoyi, 2020. "Setting condition of downstream surge tank of hydropower station with sloping ceiling tailrace tunnel," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    4. Guo, Wencheng & Peng, Zhiyuan, 2019. "Hydropower system operation stability considering the coupling effect of water potential energy in surge tank and power grid," Renewable Energy, Elsevier, vol. 134(C), pages 846-861.
    5. Guo, Wencheng & Yang, Jiandong, 2017. "Hopf bifurcation control of hydro-turbine governing system with sloping ceiling tailrace tunnel using nonlinear state feedback," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 426-434.
    6. Guo, Wencheng & Yang, Jiandong, 2017. "Combined effect of upstream surge chamber and sloping ceiling tailrace tunnel on dynamic performance of turbine regulating system of hydroelectric power plant," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 243-255.
    7. Peng, Zhiyuan & Guo, Wencheng, 2019. "Saturation characteristics for stability of hydro-turbine governing system with surge tank," Renewable Energy, Elsevier, vol. 131(C), pages 318-332.
    8. Eshaghi, Shiva & Khoshsiar Ghaziani, Reza & Ansari, Alireza, 2020. "Hopf bifurcation, chaos control and synchronization of a chaotic fractional-order system with chaos entanglement function," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 172(C), pages 321-340.
    9. Liu, Dong & Li, Chaoshun & Malik, O.P., 2021. "Nonlinear modeling and multi-scale damping characteristics of hydro-turbine regulation systems under complex variable hydraulic and electrical network structures," Applied Energy, Elsevier, vol. 293(C).
    10. Guo, Wencheng & Yang, Jiandong & Teng, Yi, 2017. "Surge wave characteristics for hydropower station with upstream series double surge tanks in load rejection transient," Renewable Energy, Elsevier, vol. 108(C), pages 488-501.
    11. Guo, Wencheng & Yang, Jiandong, 2018. "Dynamic performance analysis of hydro-turbine governing system considering combined effect of downstream surge tank and sloping ceiling tailrace tunnel," Renewable Energy, Elsevier, vol. 129(PA), pages 638-651.
    12. Kishor, Nand & Saini, R.P. & Singh, S.P., 2007. "A review on hydropower plant models and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 776-796, June.
    13. Liu, Dong & Li, Chaoshun & Tan, Xiaoqiang & Lu, Xueding & Malik, O.P., 2021. "Damping characteristics analysis of hydropower units under full operating conditions and control parameters: Accurate quantitative evaluation based on refined models," Applied Energy, Elsevier, vol. 292(C).
    14. Xu, Beibei & Zhang, Jingjing & Egusquiza, Mònica & Chen, Diyi & Li, Feng & Behrens, Paul & Egusquiza, Eduard, 2021. "A review of dynamic models and stability analysis for a hydro-turbine governing system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    15. Xu, Xinyu & Guo, Wencheng, 2020. "Stability of speed regulating system of hydropower station with surge tank considering nonlinear turbine characteristics," Renewable Energy, Elsevier, vol. 162(C), pages 960-972.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gangfei Wang & Hengrui Ma & Bo Wang & Abdullah M. Alharbi & Hongxia Wang & Fuqi Ma, 2023. "Multi-Objective Optimal Power Flow Calculation Considering Carbon Emission Intensity," Sustainability, MDPI, vol. 15(24), pages 1-20, December.
    2. Fu, Wenlong & Fu, Yuchen & Li, Bailing & Zhang, Hairong & Zhang, Xuanrui & Liu, Jiarui, 2023. "A compound framework incorporating improved outlier detection and correction, VMD, weight-based stacked generalization with enhanced DESMA for multi-step short-term wind speed forecasting," Applied Energy, Elsevier, vol. 348(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wencheng Guo & Yang Liu & Fangle Qu & Xinyu Xu, 2020. "A Review of Critical Stable Sectional Areas for the Surge Tanks of Hydropower Stations," Energies, MDPI, vol. 13(23), pages 1-25, December.
    2. Zhang, Nan & Feng, Chen & Shan, Yahui & Sun, Na & Xue, Xiaoming & Shi, Liping, 2023. "A universal stability quantification method for grid-connected hydropower plant considering FOPI controller and complex nonlinear characteristics based on improved GWO," Renewable Energy, Elsevier, vol. 211(C), pages 874-894.
    3. Wencheng Guo, 2019. "A Review of the Hydraulic Transient and Dynamic Behavior of Hydropower Plants with Sloping Ceiling Tailrace Tunnels," Energies, MDPI, vol. 12(17), pages 1-28, August.
    4. Liu, Yang & Guo, Wencheng, 2021. "Multi-frequency dynamic performance of hydropower plant under coupling effect of power grid and turbine regulating system with surge tank," Renewable Energy, Elsevier, vol. 171(C), pages 557-581.
    5. Chen, Zi & Guo, Wencheng, 2023. "Stability and dynamic response of two-stage hydropower stations cascaded by regulating reservoir," Renewable Energy, Elsevier, vol. 202(C), pages 651-666.
    6. Wang, Le & Guo, Wencheng, 2022. "Nonlinear hydraulic coupling characteristics and energy conversion mechanism of pipeline - surge tank system of hydropower station with super long headrace tunnel," Renewable Energy, Elsevier, vol. 199(C), pages 1345-1360.
    7. Liu, Yi & Zhang, Jian & Chen, Sheng & Yu, Xiaodong, 2023. "Stability analysis and estimation of domain of attraction for hydropower station with surge tank," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    8. Zhu, Daoyi & Guo, Wencheng, 2019. "Critical sectional area of surge chamber considering nonlinearity of head loss of diversion tunnel and steady output of turbine," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 165-172.
    9. Lu, Xueding & Li, Chaoshun & Liu, Dong & Zhu, Zhiwei & Tan, Xiaoqiang & Xu, Rongli, 2023. "Comprehensive stability analysis of complex hydropower system under flexible operating conditions based on a fast stability domain solving method," Energy, Elsevier, vol. 274(C).
    10. Shi, Yousong & Zhou, Jianzhong & Guo, Wencheng & Zheng, Yang & Li, Chaoshun & Zhang, Yongchuan, 2022. "Nonlinear dynamic characteristics analysis and adaptive avoid vortex-coordinated optimal control of hydropower units under grid connection," Renewable Energy, Elsevier, vol. 200(C), pages 911-930.
    11. Ma, Weichao & Yan, Wenjie & Yang, Jiebin & He, Xianghui & Yang, Jiandong & Yang, Weijia, 2022. "Experimental and numerical investigation on head losses of a complex throttled surge tank for refined hydropower plant simulation," Renewable Energy, Elsevier, vol. 186(C), pages 264-279.
    12. Ma, Weichao & Zhao, Zhigao & Yang, Jiebin & Lai, Xu & Liu, Chengpeng & Yang, Jiandong, 2024. "A transient analysis framework for hydropower generating systems under parameter uncertainty by integrating physics-based and data-driven models," Energy, Elsevier, vol. 297(C).
    13. Guo, Wencheng & Zhu, Daoyi, 2020. "Setting condition of downstream surge tank of hydropower station with sloping ceiling tailrace tunnel," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    14. Tan, Xiaoqiang & Li, Chaoshun & Liu, Dong & Wang, He & Xu, Rongli & Lu, Xueding & Zhu, Zhiwei, 2023. "Multi-time scale model reduction strategy of variable-speed pumped storage unit grid-connected system for small-signal oscillation stability analysis," Renewable Energy, Elsevier, vol. 211(C), pages 985-1009.
    15. Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zhao, Zhigao & Yang, Jiandong, 2023. "Transient analysis of a hydropower plant with a super-long headrace tunnel during load acceptance: Instability mechanism and measurement verification," Energy, Elsevier, vol. 263(PA).
    16. Lan, Xinyao & Jin, Jiahui & Xu, Beibei & Chen, Diyi & Egusquiza, Mònica & Kim, Jin-Hyuk & Egusquiza, Eduard & Jafar, Nejadali & Xu, Lin & Kuang, Yuan, 2022. "Physical model test and parametric optimization of a hydroelectric generating system with a coaxial shaft surge tank," Renewable Energy, Elsevier, vol. 200(C), pages 880-899.
    17. Nan Zhang & Xiaoming Xue & Na Sun & Yanhui Gu & Wei Jiang & Chaoshun Li, 2022. "Nonlinear Modeling and Stability of a Doubly-Fed Variable Speed Pumped Storage Power Station with Surge Tank Considering Nonlinear Pump Turbine Characteristics," Energies, MDPI, vol. 15(11), pages 1-24, June.
    18. Xu, Xinyu & Guo, Wencheng, 2020. "Stability of speed regulating system of hydropower station with surge tank considering nonlinear turbine characteristics," Renewable Energy, Elsevier, vol. 162(C), pages 960-972.
    19. Dong Liu & Xinxu Wei & Jingjing Zhang & Xiao Hu & Lihong Zhang, 2023. "A Parameter Sensitivity Analysis of Hydropower Units under Full Operating Conditions Considering Turbine Nonlinearity," Sustainability, MDPI, vol. 15(15), pages 1-21, July.
    20. Wencheng Guo & Daoyi Zhu, 2018. "A Review of the Transient Process and Control for a Hydropower Station with a Super Long Headrace Tunnel," Energies, MDPI, vol. 11(11), pages 1-27, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:210:y:2023:i:c:p:556-574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.