IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v131y2019icp318-332.html
   My bibliography  Save this article

Saturation characteristics for stability of hydro-turbine governing system with surge tank

Author

Listed:
  • Peng, Zhiyuan
  • Guo, Wencheng

Abstract

This paper aims to study the saturation characteristics for stability of hydro-turbine governing system with surge tank. Firstly, the mathematical model of hydro-turbine governing system under load disturbance is established, and the equivalent independent stability discriminants are presented. Then, the saturation characteristics for stability are analyzed. Using analytical stability discriminants and stable domain, the generation mechanism of saturation characteristics is revealed, and a distinguishing method of critical saturation state is proposed. Finally, the concept of saturation sectional area of surge tank is proposed. The distribution and partition for stability states is illustrated, and a combined tuning method of sectional area of surge tank and governor parameter is proposed. The results indicate that, for hydro-turbine governing system with surge tank, the fourth-order discriminant boundary is always the critical boundary of stable domain. The second-order and third-order discriminant boundaries determine the stable domain under saturation state. The equality for fourth-order discriminant has two real solutions when the system is saturated. The saturation sectional area of surge tank is the sectional area that makes the system reach critical saturation state. Domain C of the distribution and partition figure for stability states is the most favorable domain for the system stability.

Suggested Citation

  • Peng, Zhiyuan & Guo, Wencheng, 2019. "Saturation characteristics for stability of hydro-turbine governing system with surge tank," Renewable Energy, Elsevier, vol. 131(C), pages 318-332.
  • Handle: RePEc:eee:renene:v:131:y:2019:i:c:p:318-332
    DOI: 10.1016/j.renene.2018.07.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118308516
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.07.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Wencheng & Yang, Jiandong & Teng, Yi, 2017. "Surge wave characteristics for hydropower station with upstream series double surge tanks in load rejection transient," Renewable Energy, Elsevier, vol. 108(C), pages 488-501.
    2. Yu, Xiaodong & Zhang, Jian & Fan, Chengyu & Chen, Sheng, 2016. "Stability analysis of governor-turbine-hydraulic system by state space method and graph theory," Energy, Elsevier, vol. 114(C), pages 613-622.
    3. Li, Huanhuan & Chen, Diyi & Zhang, Hao & Wu, Changzhi & Wang, Xiangyu, 2017. "Hamiltonian analysis of a hydro-energy generation system in the transient of sudden load increasing," Applied Energy, Elsevier, vol. 185(P1), pages 244-253.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zhao, Zhigao & Yang, Jiandong, 2023. "Transient analysis of a hydropower plant with a super-long headrace tunnel during load acceptance: Instability mechanism and measurement verification," Energy, Elsevier, vol. 263(PA).
    2. Xu, Pan & Fu, Wenlong & Lu, Qipeng & Zhang, Shihai & Wang, Renming & Meng, Jiaxin, 2023. "Stability analysis of hydro-turbine governing system with sloping ceiling tailrace tunnel and upstream surge tank considering nonlinear hydro-turbine characteristics," Renewable Energy, Elsevier, vol. 210(C), pages 556-574.
    3. Salleh, Mohd Badrul & Kamaruddin, Noorfazreena M. & Mohamed-Kassim, Zulfaa, 2022. "Experimental investigation on the effects of deflector angles on the power performance of a Savonius turbine for hydrokinetic applications in small rivers," Energy, Elsevier, vol. 247(C).
    4. Guo, Wencheng & Peng, Zhiyuan, 2019. "Hydropower system operation stability considering the coupling effect of water potential energy in surge tank and power grid," Renewable Energy, Elsevier, vol. 134(C), pages 846-861.
    5. Guo, Wencheng & Zhu, Daoyi, 2020. "Setting condition of downstream surge tank of hydropower station with sloping ceiling tailrace tunnel," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    6. Zhu, Daoyi & Guo, Wencheng, 2019. "Critical sectional area of surge chamber considering nonlinearity of head loss of diversion tunnel and steady output of turbine," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 165-172.
    7. Wencheng Guo & Daoyi Zhu, 2018. "A Review of the Transient Process and Control for a Hydropower Station with a Super Long Headrace Tunnel," Energies, MDPI, vol. 11(11), pages 1-27, November.
    8. Wencheng Guo, 2019. "A Review of the Hydraulic Transient and Dynamic Behavior of Hydropower Plants with Sloping Ceiling Tailrace Tunnels," Energies, MDPI, vol. 12(17), pages 1-28, August.
    9. Liu, Yang & Guo, Wencheng, 2021. "Multi-frequency dynamic performance of hydropower plant under coupling effect of power grid and turbine regulating system with surge tank," Renewable Energy, Elsevier, vol. 171(C), pages 557-581.
    10. Xu, Xinyu & Guo, Wencheng, 2020. "Stability of speed regulating system of hydropower station with surge tank considering nonlinear turbine characteristics," Renewable Energy, Elsevier, vol. 162(C), pages 960-972.
    11. Wencheng Guo & Yang Liu & Fangle Qu & Xinyu Xu, 2020. "A Review of Critical Stable Sectional Areas for the Surge Tanks of Hydropower Stations," Energies, MDPI, vol. 13(23), pages 1-25, December.
    12. Nan Zhang & Xiaoming Xue & Na Sun & Yanhui Gu & Wei Jiang & Chaoshun Li, 2022. "Nonlinear Modeling and Stability of a Doubly-Fed Variable Speed Pumped Storage Power Station with Surge Tank Considering Nonlinear Pump Turbine Characteristics," Energies, MDPI, vol. 15(11), pages 1-24, June.
    13. Kuo-Tsai Wu & Kuo-Hao Lo & Ruey-Chy Kao & Sheng-Jye Hwang, 2022. "Numerical and Experimental Investigation of the Effect of Design Parameters on Savonius-Type Hydrokinetic Turbine Performance," Energies, MDPI, vol. 15(5), pages 1-19, March.
    14. Chen, Zi & Guo, Wencheng, 2023. "Stability and dynamic response of two-stage hydropower stations cascaded by regulating reservoir," Renewable Energy, Elsevier, vol. 202(C), pages 651-666.
    15. Zhang, Nan & Feng, Chen & Shan, Yahui & Sun, Na & Xue, Xiaoming & Shi, Liping, 2023. "A universal stability quantification method for grid-connected hydropower plant considering FOPI controller and complex nonlinear characteristics based on improved GWO," Renewable Energy, Elsevier, vol. 211(C), pages 874-894.
    16. Ma, Weichao & Yan, Wenjie & Yang, Jiebin & He, Xianghui & Yang, Jiandong & Yang, Weijia, 2022. "Experimental and numerical investigation on head losses of a complex throttled surge tank for refined hydropower plant simulation," Renewable Energy, Elsevier, vol. 186(C), pages 264-279.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zhao, Zhigao & Yang, Jiandong, 2023. "Transient analysis of a hydropower plant with a super-long headrace tunnel during load acceptance: Instability mechanism and measurement verification," Energy, Elsevier, vol. 263(PA).
    2. Wencheng Guo & Daoyi Zhu, 2018. "A Review of the Transient Process and Control for a Hydropower Station with a Super Long Headrace Tunnel," Energies, MDPI, vol. 11(11), pages 1-27, November.
    3. Xinran Guo & Yuanchu Cheng & Jiada Wei & Yitian Luo, 2021. "Stability Analysis of Different Regulation Modes of Hydropower Units," Energies, MDPI, vol. 14(7), pages 1-19, March.
    4. Li, Huanhuan & Chen, Diyi & Arzaghi, Ehsan & Abbassi, Rouzbeh & Xu, Beibei & Patelli, Edoardo & Tolo, Silvia, 2018. "Safety assessment of hydro-generating units using experiments and grey-entropy correlation analysis," Energy, Elsevier, vol. 165(PA), pages 222-234.
    5. Yang, Weijia & Norrlund, Per & Chung, Chi Yung & Yang, Jiandong & Lundin, Urban, 2018. "Eigen-analysis of hydraulic-mechanical-electrical coupling mechanism for small signal stability of hydropower plant," Renewable Energy, Elsevier, vol. 115(C), pages 1014-1025.
    6. Xu, Beibei & Zhang, Jingjing & Egusquiza, Mònica & Chen, Diyi & Li, Feng & Behrens, Paul & Egusquiza, Eduard, 2021. "A review of dynamic models and stability analysis for a hydro-turbine governing system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    7. Yang, Weijia & Norrlund, Per & Bladh, Johan & Yang, Jiandong & Lundin, Urban, 2018. "Hydraulic damping mechanism of low frequency oscillations in power systems: Quantitative analysis using a nonlinear model of hydropower plants," Applied Energy, Elsevier, vol. 212(C), pages 1138-1152.
    8. Li, Huanhuan & Xu, Beibei & Riasi, Alireza & Szulc, Przemyslaw & Chen, Diyi & M'zoughi, Fares & Skjelbred, Hans Ivar & Kong, Jiehong & Tazraei, Pedram, 2019. "Performance evaluation in enabling safety for a hydropower generation system," Renewable Energy, Elsevier, vol. 143(C), pages 1628-1642.
    9. Liu, Dong & Li, Chaoshun & Tan, Xiaoqiang & Lu, Xueding & Malik, O.P., 2021. "Damping characteristics analysis of hydropower units under full operating conditions and control parameters: Accurate quantitative evaluation based on refined models," Applied Energy, Elsevier, vol. 292(C).
    10. Xu, Beibei & Chen, Diyi & Patelli, Edoardo & Shen, Haijun & Park, Jae-Hyun, 2019. "Mathematical model and parametric uncertainty analysis of a hydraulic generating system," Renewable Energy, Elsevier, vol. 136(C), pages 1217-1230.
    11. Liu, Yi & Zhang, Jian & Liu, Zhe & Chen, Long & Yu, Xiaodong, 2022. "Surge wave characteristics for hydropower plant with upstream double surge tanks connected in series under small load disturbance," Renewable Energy, Elsevier, vol. 186(C), pages 667-676.
    12. Wencheng Guo & Yang Liu & Fangle Qu & Xinyu Xu, 2020. "A Review of Critical Stable Sectional Areas for the Surge Tanks of Hydropower Stations," Energies, MDPI, vol. 13(23), pages 1-25, December.
    13. Shuang Li & Yong Yang & Qing Xia, 2018. "Dynamic Safety Assessment in Nonlinear Hydropower Generation Systems," Complexity, Hindawi, vol. 2018, pages 1-8, April.
    14. Vinod, J. & Sarkar, Bikash K. & Sanyal, Dipankar, 2022. "Flow control in a small Francis turbine by system identification and fuzzy adaptation of PID and deadband controllers," Renewable Energy, Elsevier, vol. 201(P2), pages 87-99.
    15. Ping, Zuowei & Li, Xiuting & He, Wei & Yang, Tao & Yuan, Ye, 2020. "Sparse learning of network-reduced models for locating low frequency oscillations in power systems," Applied Energy, Elsevier, vol. 262(C).
    16. Liu, Dong & Wang, Xin & Peng, Yunshui & Zhang, Hui & Xiao, Zhihuai & Han, Xiangdong & Malik, O.P., 2020. "Stability analysis of hydropower units under full operating conditions considering turbine nonlinearity," Renewable Energy, Elsevier, vol. 154(C), pages 723-742.
    17. Jixing Sun & Kun Zhang & Jiyong Liu & Kaixuan Hu & Jindong Huo & Shengchun Yan & Yan Zhang, 2023. "Mechanism of Low-Frequency Oscillation When Electric Multiple Units Pass Neutral Zone, and Suppression Method," Energies, MDPI, vol. 16(15), pages 1-15, August.
    18. Ying Yang & Bin Wang & Yuqiang Tian & Peng Chen, 2020. "Fractional-Order Finite-Time, Fault-Tolerant Control of Nonlinear Hydraulic-Turbine-Governing Systems with an Actuator Fault," Energies, MDPI, vol. 13(15), pages 1-20, July.
    19. Zhu, Daoyi & Guo, Wencheng, 2019. "Critical sectional area of surge chamber considering nonlinearity of head loss of diversion tunnel and steady output of turbine," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 165-172.
    20. Wuyi Wan & Boran Zhang & Xiaoyi Chen & Jijian Lian, 2019. "Water Hammer Control Analysis of an Intelligent Surge Tank with Spring Self-Adaptive Auxiliary Control System," Energies, MDPI, vol. 12(13), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:131:y:2019:i:c:p:318-332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.