IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v243y2025ics0960148125002769.html
   My bibliography  Save this article

Novel design of swirling jet impingement heat sink with and without internal Pin-Fins for thermal management of high-concentrator photovoltaic systems

Author

Listed:
  • Jatau, Tanimu
  • Bello-Ochende, Tunde
  • Malan, Arnaud G.

Abstract

This study presents a novel design for a swirling jet impingement cooling heat sink with and without internal pin-fins, integrated into a high concentrator photovoltaic system. The investigation was carried out under a concentration ratio of 1000 suns and Reynolds numbers ranging from 1000 to 5000 with the inlet temperature of 25 °C. The performance of the heat sink was evaluated using different design target-to-jet diameter ratios of 2, 3, 4 and 5, with the aim of identifying the best design that provides effective cooling of the solar cell. The results obtained revealed that the average cell temperature decreases as the Reynolds number increases for both the heat sink with and without internal fins for all the target-to-jet diameter ratios. A comparison of the average cell temperature showed that the heat sink with internal fins achieved lower average cell temperatures than the heat sink without internal fins across all target-to-jet diameter ratios, except for a target-to-jet diameter ratio of 4 which recorded the lowest average cell temperature of 311.56 K, corresponding to the highest cell efficiency of 40.04 % at a Reynolds number of 5000. The numerical calculations were conducted using CFD code and verified with the available data in an open literature.

Suggested Citation

  • Jatau, Tanimu & Bello-Ochende, Tunde & Malan, Arnaud G., 2025. "Novel design of swirling jet impingement heat sink with and without internal Pin-Fins for thermal management of high-concentrator photovoltaic systems," Renewable Energy, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:renene:v:243:y:2025:i:c:s0960148125002769
    DOI: 10.1016/j.renene.2025.122614
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125002769
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122614?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pérez-Higueras, Pedro & Ferrer-Rodríguez, Juan P. & Almonacid, Florencia & Fernández, Eduardo F., 2018. "Efficiency and acceptance angle of High Concentrator Photovoltaic modules: Current status and indoor measurements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 143-153.
    2. Peng, Hao & Du, Yanlian & Hu, Fenfen & Tian, Zhen & Shen, Yijun, 2023. "Thermal management of high concentrator photovoltaic system using a novel double-layer tree-shaped fractal microchannel heat sink," Renewable Energy, Elsevier, vol. 204(C), pages 77-93.
    3. Di Capua H, Mario & Escobar, Rodrigo & Diaz, A.J. & Guzmán, Amador M., 2018. "Enhancement of the cooling capability of a high concentration photovoltaic system using microchannels with forward triangular ribs on sidewalls," Applied Energy, Elsevier, vol. 226(C), pages 160-180.
    4. Chen, Liang & Deng, Daxiang & Ma, Qixian & Yao, Yingxue & Xu, Xinhai, 2022. "Performance evaluation of high concentration photovoltaic cells cooled by microchannels heat sink with serpentine reentrant microchannels," Applied Energy, Elsevier, vol. 309(C).
    5. Radwan, Ali & Ahmed, Mahmoud, 2017. "The influence of microchannel heat sink configurations on the performance of low concentrator photovoltaic systems," Applied Energy, Elsevier, vol. 206(C), pages 594-611.
    6. Moore, Michael R. & Lewis, Geoffrey McD. & Cepela, Daniel J., 2010. "Markets for renewable energy and pollution emissions: Environmental claims, emission-reduction accounting, and product decoupling," Energy Policy, Elsevier, vol. 38(10), pages 5956-5966, October.
    7. Hong, Sihui & Zhang, Bohan & Dang, Chaobin & Hihara, Eiji, 2020. "Development of two-phase flow microchannel heat sink applied to solar-tracking high-concentration photovoltaic thermal hybrid system," Energy, Elsevier, vol. 212(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yunjie & Yang, Huihan & Chen, Haifei & Yu, Bendong & Zhang, Haohua & Zou, Rui & Ren, Shaoyang, 2023. "A review: The development of crucial solar systems and corresponding cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    2. Wang, Yacheng & Xia, Guodong & Zhou, Wenbin & Zhao, Shuai & Zhao, Pengsheng, 2024. "Exergetic and environment assessment of linear fresnel concentrating photovoltaic systems integrated with a porous-wall mini-channel heat sink: Outdoor experimental tests," Energy, Elsevier, vol. 306(C).
    3. Islam, Kazi & Riggs, Brian & Ji, Yaping & Robertson, John & Spitler, Christopher & Romanin, Vince & Codd, Daniel & Escarra, Matthew D., 2019. "Transmissive microfluidic active cooling for concentrator photovoltaics," Applied Energy, Elsevier, vol. 236(C), pages 906-915.
    4. Karolina Papis-Frączek & Krzysztof Sornek, 2022. "A Review on Heat Extraction Devices for CPVT Systems with Active Liquid Cooling," Energies, MDPI, vol. 15(17), pages 1-49, August.
    5. Cameron, William James & Reddy, K. Srinivas & Mallick, Tapas Kumar, 2022. "Review of high concentration photovoltaic thermal hybrid systems for highly efficient energy cogeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    6. Abou-Ziyan, Hosny & Ibrahim, Mohammed & Abdel-Hameed, Hala, 2020. "Performance modeling and analysis of high-concentration multi-junction photovoltaics using advanced hybrid cooling systems," Applied Energy, Elsevier, vol. 269(C).
    7. Peng, Hao & Du, Yanlian & Hu, Fenfen & Tian, Zhen & Shen, Yijun, 2023. "Thermal management of high concentrator photovoltaic system using a novel double-layer tree-shaped fractal microchannel heat sink," Renewable Energy, Elsevier, vol. 204(C), pages 77-93.
    8. Radwan, Ali & Ookawara, Shinichi & Ahmed, Mahmoud, 2019. "Thermal management of concentrator photovoltaic systems using two-phase flow boiling in double-layer microchannel heat sinks," Applied Energy, Elsevier, vol. 241(C), pages 404-419.
    9. Abo-Zahhad, Essam M. & Ookawara, Shinichi & Radwan, Ali & El-Shazly, A.H. & Elkady, M.F., 2019. "Numerical analyses of hybrid jet impingement/microchannel cooling device for thermal management of high concentrator triple-junction solar cell," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Ni, Song & Pan, Chin & Hibiki, Takashi & Zhao, Jiyun, 2024. "Applications of nucleate boiling in renewable energy and thermal management and recent advances in modeling——a review," Energy, Elsevier, vol. 289(C).
    11. Badr, Farouk & Radwan, Ali & Ahmed, Mahmoud & Hamed, Ahmed M., 2022. "An experimental study of the concentrator photovoltaic/thermoelectric generator performance using different passive cooling methods," Renewable Energy, Elsevier, vol. 185(C), pages 1078-1094.
    12. Cech, Marek, 2016. "Panel regression analysis of electricity prices and renewable energy in the European Union," MPRA Paper 74601, University Library of Munich, Germany.
    13. Ju, Xing & Pan, Xinyu & Zhang, Zheyang & Xu, Chao & Wei, Gaosheng, 2019. "Thermal and electrical performance of the dense-array concentrating photovoltaic (DA-CPV) system under non-uniform illumination," Applied Energy, Elsevier, vol. 250(C), pages 904-915.
    14. Daniel T. Kaffine & Brannin J. McBee & Jozef Lieskovsky, 2013. "Emissions Savings from Wind Power Generation in Texas," The Energy Journal, , vol. 34(1), pages 155-176, January.
    15. Bushra, Nayab & Hartmann, Timo, 2019. "A review of state-of-the-art reflective two-stage solar concentrators: Technology categorization and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    16. Cameron, William J. & Shanks, Katie & Mallick, Tapas K. & Reddy, K. Srinivas, 2024. "Theoretical investigation of height and width tapered microchannel cooling systems for ultra-high concentrator photovoltaic thermal hybrids," Renewable Energy, Elsevier, vol. 234(C).
    17. Rodrigo, P.M. & Talavera, D.L. & Fernández, E.F. & Almonacid, F.M. & Pérez-Higueras, P.J., 2019. "Optimum capacity of the inverters in concentrator photovoltaic power plants with emphasis on shading impact," Energy, Elsevier, vol. 187(C).
    18. Kang, Ying & Xia, Zhi-xun & Luo, Zhen-bing & Deng, Xiong & Zhu, Yin-xin & Peng, Can, 2024. "Experimental study on a dual synthetic jets liquid cooling device," Applied Energy, Elsevier, vol. 372(C).
    19. Elsabahy, Mohamed M. & Emam, Mohamed & Sekiguchi, Hidetoshi & Ahmed, Mahmoud, 2024. "Performance mapping of silicon-based solar cell for efficient power generation and thermal utilization: Effect of cell encapsulation, temperature coefficient, and reference efficiency," Applied Energy, Elsevier, vol. 356(C).
    20. Fernandez, Eduardo F. & Chemisana, Daniel & Micheli, Leonardo & Almonacid, Florencia, 2019. "Spectral nature of soiling and its impact on multi-junction based concentrator systems," MPRA Paper 106251, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:243:y:2025:i:c:s0960148125002769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.