IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v206y2017icp594-611.html
   My bibliography  Save this article

The influence of microchannel heat sink configurations on the performance of low concentrator photovoltaic systems

Author

Listed:
  • Radwan, Ali
  • Ahmed, Mahmoud

Abstract

A new cooling technique for concentrator photovoltaic (CPV) systems is developed using various configurations of microchannel heat sinks. Five distinct configurations integrated with a CPV system are investigated, including a wide rectangular microchannel, a single layer parallel- and counter- flow microchannel, and a double layer parallel- and counter- flow microchannel. A comprehensive, three-dimensional thermo-fluid model for photovoltaic layers, integrated with a microchannel heat sink, is developed. The model is numerically simulated and validated using the available experimental and numerical data. Based on the results, the temperature contours on a plane located at the mid-thickness of the silicon layer are presented at different operating conditions and heat sink configurations. Accordingly, the maximum local temperature can be detected and temperature uniformity can be accurately estimated. Furthermore, at a concentration ratio of 20, the CPV system integrated with a single layer parallel- flow microchannel heat sink configuration (B) achieves the highest cell net power, electrical efficiency, and the minimum cell temperature. On the contrary, at the same operating conditions, the use of a single layer counter-flow microchannel heat sink configuration (C) is found to be the least effective cooling technique. The results of this study can guide industrial designers to adopt compact heat sink configurations and simple designs in the manufacturing process of hybrid CPV-thermal systems.

Suggested Citation

  • Radwan, Ali & Ahmed, Mahmoud, 2017. "The influence of microchannel heat sink configurations on the performance of low concentrator photovoltaic systems," Applied Energy, Elsevier, vol. 206(C), pages 594-611.
  • Handle: RePEc:eee:appene:v:206:y:2017:i:c:p:594-611
    DOI: 10.1016/j.apenergy.2017.08.202
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917312357
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.08.202?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rejeb, Oussama & Dhaou, Houcine & Jemni, Abdelmajid, 2015. "A numerical investigation of a photovoltaic thermal (PV/T) collector," Renewable Energy, Elsevier, vol. 77(C), pages 43-50.
    2. Kong, Chengdong & Xu, Zilin & Yao, Qiang, 2013. "Outdoor performance of a low-concentrated photovoltaic–thermal hybrid system with crystalline silicon solar cells," Applied Energy, Elsevier, vol. 112(C), pages 618-625.
    3. Ali, Ahmed Hamza H. & Ahmed, Mahmoud & Youssef, M.S., 2010. "Characteristics of heat transfer and fluid flow in a channel with single-row plates array oblique to flow direction for photovoltaic/thermal system," Energy, Elsevier, vol. 35(9), pages 3524-3534.
    4. Sarhaddi, F. & Farahat, S. & Ajam, H. & Behzadmehr, A. & Mahdavi Adeli, M., 2010. "An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector," Applied Energy, Elsevier, vol. 87(7), pages 2328-2339, July.
    5. Du, Bin & Hu, Eric & Kolhe, Mohan, 2012. "Performance analysis of water cooled concentrated photovoltaic (CPV) system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6732-6736.
    6. Teo, H.G. & Lee, P.S. & Hawlader, M.N.A., 2012. "An active cooling system for photovoltaic modules," Applied Energy, Elsevier, vol. 90(1), pages 309-315.
    7. Smith, Christopher J. & Forster, Piers M. & Crook, Rolf, 2014. "Global analysis of photovoltaic energy output enhanced by phase change material cooling," Applied Energy, Elsevier, vol. 126(C), pages 21-28.
    8. Pathak, M.J.M. & Sanders, P.G. & Pearce, J.M., 2014. "Optimizing limited solar roof access by exergy analysis of solar thermal, photovoltaic, and hybrid photovoltaic thermal systems," Applied Energy, Elsevier, vol. 120(C), pages 115-124.
    9. Bahaidarah, H. & Subhan, Abdul & Gandhidasan, P. & Rehman, S., 2013. "Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions," Energy, Elsevier, vol. 59(C), pages 445-453.
    10. Siddiqui, M.U. & Arif, A.F.M., 2013. "Electrical, thermal and structural performance of a cooled PV module: Transient analysis using a multiphysics model," Applied Energy, Elsevier, vol. 112(C), pages 300-312.
    11. Tiwari, Arvind & Sodha, M.S., 2006. "Performance evaluation of hybrid PV/thermal water/air heating system: A parametric study," Renewable Energy, Elsevier, vol. 31(15), pages 2460-2474.
    12. Widyolar, Bennett K. & Abdelhamid, Mahmoud & Jiang, Lun & Winston, Roland & Yablonovitch, Eli & Scranton, Gregg & Cygan, David & Abbasi, Hamid & Kozlov, Aleksandr, 2017. "Design, simulation and experimental characterization of a novel parabolic trough hybrid solar photovoltaic/thermal (PV/T) collector," Renewable Energy, Elsevier, vol. 101(C), pages 1379-1389.
    13. Ju, Xing & Xu, Chao & Han, Xue & Du, Xiaoze & Wei, Gaosheng & Yang, Yongping, 2017. "A review of the concentrated photovoltaic/thermal (CPVT) hybrid solar systems based on the spectral beam splitting technology," Applied Energy, Elsevier, vol. 187(C), pages 534-563.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kandil, A.A. & Awad, Mohamed M. & Sultan, Gamal I. & Salem, Mohamed S., 2022. "Investigating the performance characteristics of low concentrated photovoltaic systems utilizing a beam splitting device under variable cutoff wavelengths," Renewable Energy, Elsevier, vol. 196(C), pages 375-389.
    2. Karolina Papis-Frączek & Krzysztof Sornek, 2022. "A Review on Heat Extraction Devices for CPVT Systems with Active Liquid Cooling," Energies, MDPI, vol. 15(17), pages 1-49, August.
    3. Di Capua H, Mario & Escobar, Rodrigo & Diaz, A.J. & Guzmán, Amador M., 2018. "Enhancement of the cooling capability of a high concentration photovoltaic system using microchannels with forward triangular ribs on sidewalls," Applied Energy, Elsevier, vol. 226(C), pages 160-180.
    4. Idris Al Siyabi & Sourav Khanna & Senthilarasu Sundaram & Tapas Mallick, 2018. "Experimental and Numerical Thermal Analysis of Multi-Layered Microchannel Heat Sink for Concentrating Photovoltaic Application," Energies, MDPI, vol. 12(1), pages 1-25, December.
    5. Hamada, Alaa & Emam, Mohamed & Refaey, H.A. & Moawed, M. & Abdelrahman, M.A., 2023. "Investigating the performance of a water-based PVT system using encapsulated PCM balls: An experimental study," Energy, Elsevier, vol. 284(C).
    6. Abou-Ziyan, Hosny & Ibrahim, Mohammed & Abdel-Hameed, Hala, 2020. "Performance modeling and analysis of high-concentration multi-junction photovoltaics using advanced hybrid cooling systems," Applied Energy, Elsevier, vol. 269(C).
    7. Abo-Zahhad, Essam M. & Ookawara, Shinichi & Radwan, Ali & El-Shazly, A.H. & Elkady, M.F., 2019. "Numerical analyses of hybrid jet impingement/microchannel cooling device for thermal management of high concentrator triple-junction solar cell," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    8. Ju, Xing & Pan, Xinyu & Zhang, Zheyang & Xu, Chao & Wei, Gaosheng, 2019. "Thermal and electrical performance of the dense-array concentrating photovoltaic (DA-CPV) system under non-uniform illumination," Applied Energy, Elsevier, vol. 250(C), pages 904-915.
    9. Islam, Kazi & Riggs, Brian & Ji, Yaping & Robertson, John & Spitler, Christopher & Romanin, Vince & Codd, Daniel & Escarra, Matthew D., 2019. "Transmissive microfluidic active cooling for concentrator photovoltaics," Applied Energy, Elsevier, vol. 236(C), pages 906-915.
    10. Tao Yang & Xiaoming Zhang & Zhenyuan Chang & Liang Xu & Lei Xi & Jianmin Gao & Wei Kou & Xiaochun Jing, 2023. "Study on Flow and Heat Transfer Characteristics in Lamilloy Structure with Different Configurations of Internal Minichannels," Energies, MDPI, vol. 16(24), pages 1-18, December.
    11. Radwan, Ali & Ookawara, Shinichi & Ahmed, Mahmoud, 2019. "Thermal management of concentrator photovoltaic systems using two-phase flow boiling in double-layer microchannel heat sinks," Applied Energy, Elsevier, vol. 241(C), pages 404-419.
    12. Emam, Mohamed & Ookawara, Shinichi & Ahmed, Mahmoud, 2019. "Thermal management of electronic devices and concentrator photovoltaic systems using phase change material heat sinks: Experimental investigations," Renewable Energy, Elsevier, vol. 141(C), pages 322-339.
    13. Ji, Yishuang & Lv, Song & Qian, Zuoqin & Ji, Yitong & Ren, Juwen & Liang, Kaiming & Wang, Shulong, 2022. "Comparative study on cooling method for concentrating photovoltaic system," Energy, Elsevier, vol. 253(C).
    14. Wang, Jian & Kong, Hui & Xu, Yaobin & Wu, Jinsong, 2019. "Experimental investigation of heat transfer and flow characteristics in finned copper foam heat sinks subjected to jet impingement cooling," Applied Energy, Elsevier, vol. 241(C), pages 433-443.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Michael, Jee Joe & S, Iniyan & Goic, Ranko, 2015. "Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 62-88.
    3. Wu, Shuang-Ying & Chen, Chen & Xiao, Lan, 2018. "Heat transfer characteristics and performance evaluation of water-cooled PV/T system with cooling channel above PV panel," Renewable Energy, Elsevier, vol. 125(C), pages 936-946.
    4. Nižetić, S. & Grubišić- Čabo, F. & Marinić-Kragić, I. & Papadopoulos, A.M., 2016. "Experimental and numerical investigation of a backside convective cooling mechanism on photovoltaic panels," Energy, Elsevier, vol. 111(C), pages 211-225.
    5. Sargunanathan, S. & Elango, A. & Mohideen, S. Tharves, 2016. "Performance enhancement of solar photovoltaic cells using effective cooling methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 382-393.
    6. Shiravi, Amir Hossein & Firoozzadeh, Mohammad & Lotfi, Marzieh, 2022. "Experimental study on the effects of air blowing and irradiance intensity on the performance of photovoltaic modules, using Central Composite Design," Energy, Elsevier, vol. 238(PA).
    7. Kane, Aarti & Verma, Vishal & Singh, Bhim, 2017. "Optimization of thermoelectric cooling technology for an active cooling of photovoltaic panel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1295-1305.
    8. Hassan, Atazaz & Abbas, Sajid & Yousuf, Saima & Abbas, Fakhar & Amin, N.M. & Ali, Shujaat & Shahid Mastoi, Muhammad, 2023. "An experimental and numerical study on the impact of various parameters in improving the heat transfer performance characteristics of a water based photovoltaic thermal system," Renewable Energy, Elsevier, vol. 202(C), pages 499-512.
    9. Hasan, Ahmed & Sarwar, Jawad & Shah, Ali Hasan, 2018. "Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 835-852.
    10. Sathe, Tushar M. & Dhoble, A.S., 2017. "A review on recent advancements in photovoltaic thermal techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 645-672.
    11. Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2019. "Development and applications of photovoltaic–thermal systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 249-265.
    12. Sun, Yong & Wang, Yiping & Zhu, Li & Yin, Baoquan & Xiang, Haijun & Huang, Qunwu, 2014. "Direct liquid-immersion cooling of concentrator silicon solar cells in a linear concentrating photovoltaic receiver," Energy, Elsevier, vol. 65(C), pages 264-271.
    13. Ji, Yishuang & Lv, Song & Qian, Zuoqin & Ji, Yitong & Ren, Juwen & Liang, Kaiming & Wang, Shulong, 2022. "Comparative study on cooling method for concentrating photovoltaic system," Energy, Elsevier, vol. 253(C).
    14. Sato, Daisuke & Yamada, Noboru, 2019. "Review of photovoltaic module cooling methods and performance evaluation of the radiative cooling method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 151-166.
    15. Bai, Attila & Popp, József & Balogh, Péter & Gabnai, Zoltán & Pályi, Béla & Farkas, István & Pintér, Gábor & Zsiborács, Henrik, 2016. "Technical and economic effects of cooling of monocrystalline photovoltaic modules under Hungarian conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1086-1099.
    16. Siddiqui, M.U. & Siddiqui, Osman K. & Al-Sarkhi, A. & Arif, A.F.M. & Zubair, Syed M., 2019. "A novel heat exchanger design procedure for photovoltaic panel cooling application: An analytical and experimental evaluation," Applied Energy, Elsevier, vol. 239(C), pages 41-56.
    17. Ryan Bugeja & Luciano Mule’ Stagno & Ioannis Niarchos, 2023. "Full-Scale Design, Implementation and Testing of an Innovative Photovoltaic Cooling System (IPCoSy)," Sustainability, MDPI, vol. 15(24), pages 1-19, December.
    18. Chandrasekar, M. & Senthilkumar, T., 2015. "Experimental demonstration of enhanced solar energy utilization in flat PV (photovoltaic) modules cooled by heat spreaders in conjunction with cotton wick structures," Energy, Elsevier, vol. 90(P2), pages 1401-1410.
    19. Nasrin, R. & Hasanuzzaman, M. & Rahim, N.A., 2018. "Effect of high irradiation and cooling on power, energy and performance of a PVT system," Renewable Energy, Elsevier, vol. 116(PA), pages 552-569.
    20. Manxuan Xiao & Llewellyn Tang & Xingxing Zhang & Isaac Yu Fat Lun & Yanping Yuan, 2018. "A Review on Recent Development of Cooling Technologies for Concentrated Photovoltaics (CPV) Systems," Energies, MDPI, vol. 11(12), pages 1-39, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:206:y:2017:i:c:p:594-611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.