IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v241y2025ics0960148124023371.html
   My bibliography  Save this article

Exploring the causes of slow biogas energy transition in rural areas of Cameroon: A technological innovation systems approach

Author

Listed:
  • Ketuama, Chama Theodore
  • Roubík, Hynek

Abstract

The diffusion of biogas technology remains extremely slow in Cameroon despite global mobilisation to transition to cleaner energy sources. Without adequate evidence to inform the formulation of new policies and strategies to revamp the biogas sector, this study applies a technological innovations systems (TIS) approach to investigate the causes of the slow transition to biogas energy in rural areas of Cameroon. This included identifying the structural/functional problems, performance analysis of the biogas innovation system (BIS) and the systemic problems hindering the development and diffusion of biogas technology in Cameroon. With a qualitative case study approach, primary and secondary data collected through document study, 92 interviews, and direct observation of 51 biogas plants were used. The results reveal a very weak but emergent biogas innovation system. This is caused by combined structural and dynamic (systemic) problems resulting mainly from a poor institutional setting, lack of legitimacy, weak biogas actor-network, inadequate funding and technical capacity to sustain the technology. Building a resilient biogas market in Cameroon requires providing solutions to the current systemic problems.

Suggested Citation

  • Ketuama, Chama Theodore & Roubík, Hynek, 2025. "Exploring the causes of slow biogas energy transition in rural areas of Cameroon: A technological innovation systems approach," Renewable Energy, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:renene:v:241:y:2025:i:c:s0960148124023371
    DOI: 10.1016/j.renene.2024.122269
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124023371
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122269?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Negro, Simona O. & Alkemade, Floortje & Hekkert, Marko P., 2012. "Why does renewable energy diffuse so slowly? A review of innovation system problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3836-3846.
    2. Tigabu, Aschalew D. & Berkhout, Frans & van Beukering, Pieter, 2015. "Technology innovation systems and technology diffusion: Adoption of bio-digestion in an emerging innovation system in Rwanda," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 318-330.
    3. Negro, Simona O. & Hekkert, Marko P. & Smits, Ruud E., 2007. "Explaining the failure of the Dutch innovation system for biomass digestion--A functional analysis," Energy Policy, Elsevier, vol. 35(2), pages 925-938, February.
    4. Hewitt, J. & Holden, M. & Robinson, B.L. & Jewitt, S. & Clifford, M.J., 2022. "Not quite cooking on gas: Understanding biogas plant failure and abandonment in Northern Tanzania," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    5. Borges, Cosme P. & Silberg, Timothy R. & Uriona-Maldonado, Mauricio & Vaz, Caroline R., 2023. "Scaling actors’ perspectives about innovation system functions: Diffusion of biogas in Brazil," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    6. Diouf, Boucar & Miezan, Ekra, 2019. "The biogas initiative in developing countries, from technical potential to failure: The case study of Senegal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 248-254.
    7. Anna J. Wieczorek & Marko P. Hekkert, 2012. "Systemic instruments for systemic innovation problems: A framework for policy makers and innovation scholars," Science and Public Policy, Oxford University Press, vol. 39(1), pages 74-87, February.
    8. Marc Kalina & Jonathan Òlal Ogwang & Elizabeth Tilley, 2022. "From potential to practice: rethinking Africa’s biogas revolution," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-5, December.
    9. Lundvall, Bengt-Ake & Johnson, Bjorn & Andersen, Esben Sloth & Dalum, Bent, 2002. "National systems of production, innovation and competence building," Research Policy, Elsevier, vol. 31(2), pages 213-231, February.
    10. Hassan Qudrat-Ullah, 2024. "Improving Rural Electrification Access in Cameroon: A Qualitative Study," Advances in African Economic, Social and Political Development, in: Exploring the Dynamics of Renewable Energy and Sustainable Development in Africa, chapter 0, pages 7-36, Springer.
    11. Koirala, Binod Prasad & van Oost, Ellen & van der Windt, Henny, 2018. "Community energy storage: A responsible innovation towards a sustainable energy system?," Applied Energy, Elsevier, vol. 231(C), pages 570-585.
    12. Anna J. Wieczorek & Marko P. Hekkert, 2012. "Corrigendum to 'Systemic instruments for systemic innovation problems: A framework for policy makers and innovation scholars'," Science and Public Policy, Oxford University Press, vol. 39(6), pages 842-842, December.
    13. Muh, Erasmus & Amara, Sofiane & Tabet, Fouzi, 2018. "Sustainable energy policies in Cameroon: A holistic overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3420-3429.
    14. Markard, Jochen & Truffer, Bernhard, 2008. "Technological innovation systems and the multi-level perspective: Towards an integrated framework," Research Policy, Elsevier, vol. 37(4), pages 596-615, May.
    15. Bluemling, Bettina & Mol, Arthur P.J. & Tu, Qin, 2013. "The social organization of agricultural biogas production and use," Energy Policy, Elsevier, vol. 63(C), pages 10-17.
    16. Bergek, Anna & Jacobsson, Staffan & Carlsson, Bo & Lindmark, Sven & Rickne, Annika, 2008. "Analyzing the functional dynamics of technological innovation systems: A scheme of analysis," Research Policy, Elsevier, vol. 37(3), pages 407-429, April.
    17. Ketuama, Chama Theodore & Roubík, Hynek, 2024. "Economic viability and factors affecting farmers’ willingness to pay for adopting small-scale biogas plants in rural areas of Cameroon," Renewable Energy, Elsevier, vol. 230(C).
    18. Edsand, Hans-Erik, 2019. "Technological innovation system and the wider context: A framework for developing countries," Technology in Society, Elsevier, vol. 58(C).
    19. Tigabu, Aschalew Demeke & Berkhout, Frans & van Beukering, Pieter, 2015. "The diffusion of a renewable energy technology and innovation system functioning: Comparing bio-digestion in Kenya and Rwanda," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 331-345.
    20. Ghimire, Prakash C., 2013. "SNV supported domestic biogas programmes in Asia and Africa," Renewable Energy, Elsevier, vol. 49(C), pages 90-94.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Oliveira, Luiz Gustavo Silva & Negro, Simona O., 2019. "Contextual structures and interaction dynamics in the Brazilian Biogas Innovation System," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 462-481.
    2. Konstantinos Karanasios & Paul Parker, 2018. "Explaining the Diffusion of Renewable Electricity Technologies in Canadian Remote Indigenous Communities through the Technological Innovation System Approach," Sustainability, MDPI, vol. 10(11), pages 1-28, October.
    3. Dahesh, Mehran Badin & Tabarsa, Gholamali & Zandieh, Mostafa & Hamidizadeh, Mohammadreza, 2020. "Reviewing the intellectual structure and evolution of the innovation systems approach: A social network analysis," Technology in Society, Elsevier, vol. 63(C).
    4. van Rijnsoever, Frank J. & van den Berg, Jesse & Koch, Joost & Hekkert, Marko P., 2015. "Smart innovation policy: How network position and project composition affect the diversity of an emerging technology," Research Policy, Elsevier, vol. 44(5), pages 1094-1107.
    5. Hu, Rui & Skea, Jim & Hannon, Matthew J., 2018. "Measuring the energy innovation process: An indicator framework and a case study of wind energy in China," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 227-244.
    6. Mohammad Esmailzadeh & Siamak Noori & Alireza Aliahmadi & Hamidreza Nouralizadeh & Marcel Bogers, 2020. "A Functional Analysis of Technological Innovation Systems in Developing Countries: An Evaluation of Iran’s Photovoltaic Innovation System," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    7. Kristin Reichardt & Karoline S. Rogge & Simona Negro & Marko Hekkert, 2015. "Analyzing interdependencies between policy mixes and technological innovation systems: the case of offshore wind in Germany," Innovation Studies Utrecht (ISU) working paper series 15-04, Utrecht University, Department of Innovation Studies, revised Aug 2015.
    8. Hornum, Sebastian Toft & Bolwig, Simon, 2021. "A functional analysis of the role of input suppliers in an agricultural innovation system: The case of small-scale irrigation in Kenya," Agricultural Systems, Elsevier, vol. 193(C).
    9. Wieczorek, Anna J. & Negro, Simona O. & Harmsen, Robert & Heimeriks, Gaston J. & Luo, Lin & Hekkert, Marko P., 2013. "A review of the European offshore wind innovation system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 294-306.
    10. Kieft, Alco & Harmsen, Robert & Hekkert, Marko P., 2020. "Toward ranking interventions for Technological Innovation Systems via the concept of Leverage Points," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    11. Yu-Sheng Kao & Kazumitsu Nawata & Chi-Yo Huang, 2019. "Systemic Functions Evaluation based Technological Innovation System for the Sustainability of IoT in the Manufacturing Industry," Sustainability, MDPI, vol. 11(8), pages 1-34, April.
    12. Norouzi, F. & Hoppe, T. & Kamp, L.M. & Manktelow, C. & Bauer, P., 2023. "Diagnosis of the implementation of smart grid innovation in The Netherlands and corrective actions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    13. Nilsson, Magnus & Sia-Ljungström, Clarissa, 2013. "The Role of Innovation Intermediaries in Innovation Systems," 2013 International European Forum, February 18-22, 2013, Innsbruck-Igls, Austria 164741, International European Forum on System Dynamics and Innovation in Food Networks.
    14. Kebede, Kassahun Y. & Mitsufuji, Toshio, 2017. "Technological innovation system building for diffusion of renewable energy technology: A case of solar PV systems in Ethiopia," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 242-253.
    15. Borges, Cosme P. & Silberg, Timothy R. & Uriona-Maldonado, Mauricio & Vaz, Caroline R., 2023. "Scaling actors’ perspectives about innovation system functions: Diffusion of biogas in Brazil," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    16. Lashitew, Addisu A. & van Tulder, Rob & Liasse, Yann, 2019. "Mobile phones for financial inclusion: What explains the diffusion of mobile money innovations?," Research Policy, Elsevier, vol. 48(5), pages 1201-1215.
    17. Yu-Sheng Kao & Kazumitsu Nawata & Chi-Yo Huang, 2019. "Evaluating the Performance of Systemic Innovation Problems of the IoT in Manufacturing Industries by Novel MCDM Methods," Sustainability, MDPI, vol. 11(18), pages 1-33, September.
    18. Jonas Heiberg & Bernhard Truffer, 2021. "The emergence of a global innovation system – a case study from the water sector," GEIST - Geography of Innovation and Sustainability Transitions 2021(09), GEIST Working Paper Series.
    19. Torres-Avila, Angelica & Aguilar-Ávila, Jorge & Santoyo-Cortés, Vinicio Horacio & Martínez-González, Enrique Genaro & Aguilar-Gallegos, Norman, 2022. "Innovation in the pineapple value chain in Mexico: Explaining the global adoption process of the MD-2 hybrid," Agricultural Systems, Elsevier, vol. 198(C).
    20. Ghazinoory, Sepehr & Nasri, Shohreh & Ameri, Fatemeh & Montazer, Gholam Ali & Shayan, Ali, 2020. "Why do we need ‘Problem-oriented Innovation System (PIS)’ for solving macro-level societal problems?," Technological Forecasting and Social Change, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:241:y:2025:i:c:s0960148124023371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.