IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v238y2025ics0960148124019165.html
   My bibliography  Save this article

A scientometric examination on geothermal energy application research

Author

Listed:
  • Li, Fanghua
  • Ou, Xiaoduo

Abstract

A growing body of literature related to geothermal energy application (GEA) has emerged, yet a scientometric lens has been notably lacking, leaving GEA research trajectories uncharted. Here, we present a scientometric examination of 2259 GEA papers published between 1990 and 2022, leveraging a dataset from the Web of Science and utilizing a Python-based analytical approach to trace the evolution of GEA research. Our findings highlight a significant increase in GEA publications, collaborative authorships, institutions, and global contributors in recent years. Keywords in GEA research emphasize both theoretical understanding and technologies for optimizing geothermal energy extraction. China and the USA are key players, with the Chinese Academy of Sciences notably leading in publication metrics. Journals such as "Geothermics" and "Renewable Energy" lead in output volume. While title length does not present a clear-cut influence on citation rates, papers with titles of 10–20 words tend to receive more citations. Review articles, comprising 15 % of the analyzed publications, command significantly higher citation rates compared to other types of papers. Papers of extended number of pages and those with many cited references count command higher citation frequencies. Interestingly, manuscripts with limited authorship, particularly single-authored, often achieve citations surpassing 100 marks.

Suggested Citation

  • Li, Fanghua & Ou, Xiaoduo, 2025. "A scientometric examination on geothermal energy application research," Renewable Energy, Elsevier, vol. 238(C).
  • Handle: RePEc:eee:renene:v:238:y:2025:i:c:s0960148124019165
    DOI: 10.1016/j.renene.2024.121848
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124019165
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121848?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alessandro Franco & Maurizio Vaccaro, 2020. "Sustainable Sizing of Geothermal Power Plants: Appropriate Potential Assessment Methods," Sustainability, MDPI, vol. 12(9), pages 1-19, May.
    2. Lu, Shyi-Min, 2018. "A global review of enhanced geothermal system (EGS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2902-2921.
    3. Galgaro, A. & Di Sipio, E. & Carrera, A. & Dalla Santa, G. & Escudero, A. Ramos & Cuevas, J.M. & Pasquali, R. & Sanner, B. & Bernardi, A., 2022. "European and municipal scale drillability maps: A tool to identify the most suitable techniques to install borehole heat exchangers (BHE) probes," Renewable Energy, Elsevier, vol. 192(C), pages 188-199.
    4. de Moel, Monique & Bach, Peter M. & Bouazza, Abdelmalek & Singh, Rao M. & Sun, JingLiang O., 2010. "Technological advances and applications of geothermal energy pile foundations and their feasibility in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2683-2696, December.
    5. Wenjie Zhang & Hongping Yuan, 2019. "A Bibliometric Analysis of Energy Performance Contracting Research from 2008 to 2018," Sustainability, MDPI, vol. 11(13), pages 1-23, June.
    6. Palomo-Torrejón, Elisabet & Colmenar-Santos, Antonio & Rosales-Asensio, Enrique & Mur-Pérez, Francisco, 2021. "Economic and environmental benefits of geothermal energy in industrial processes," Renewable Energy, Elsevier, vol. 174(C), pages 134-146.
    7. Moore, Kayla R. & Holländer, Hartmut M., 2020. "Feasibility of low-temperature geothermal systems: Considerations of thermal anomalies, geochemistry, and local assets," Applied Energy, Elsevier, vol. 275(C).
    8. Yuan, Wanju & Chen, Zhuoheng & Grasby, Stephen E. & Little, Edward, 2021. "Closed-loop geothermal energy recovery from deep high enthalpy systems," Renewable Energy, Elsevier, vol. 177(C), pages 976-991.
    9. Liu, Yongge & Hou, Jian & Zhao, Haifeng & Liu, Xiaoyu & Xia, Zhizeng, 2019. "Numerical simulation of simultaneous exploitation of geothermal energy and natural gas hydrates by water injection into a geothermal heat exchange well," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 467-481.
    10. Gong, Facheng & Guo, Tiankui & Sun, Wei & Li, Zhaomin & Yang, Bin & Chen, Yimei & Qu, Zhanqing, 2020. "Evaluation of geothermal energy extraction in Enhanced Geothermal System (EGS) with multiple fracturing horizontal wells (MFHW)," Renewable Energy, Elsevier, vol. 151(C), pages 1339-1351.
    11. Devkota, Laxmi P. & Bhattarai, Utsav & Khatri, Pawan & Marahatta, Suresh & Shrestha, Dibesh, 2022. "Resilience of hydropower plants to flow variation through the concept of flow elasticity of power: Theoretical development," Renewable Energy, Elsevier, vol. 184(C), pages 920-932.
    12. Franco, Alessandro & Vaccaro, Maurizio, 2014. "Numerical simulation of geothermal reservoirs for the sustainable design of energy plants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 987-1002.
    13. Gola, Gianluca & Di Sipio, Eloisa & Facci, Marina & Galgaro, Antonio & Manzella, Adele, 2022. "Geothermal deep closed-loop heat exchangers: A novel technical potential evaluation to answer the power and heat demands," Renewable Energy, Elsevier, vol. 198(C), pages 1193-1209.
    14. Aydin, Hakki & Merey, Sukru, 2021. "Potential of geothermal energy production from depleted gas fields: A case study of Dodan Field, Turkey," Renewable Energy, Elsevier, vol. 164(C), pages 1076-1088.
    15. Quick, Hubert & Michael, Joachim & Arslan, Ulvi & Huber, Heiko, 2013. "Geothermal application in low-enthalpy regions," Renewable Energy, Elsevier, vol. 49(C), pages 133-136.
    16. Moya, Diego & Aldás, Clay & Kaparaju, Prasad, 2018. "Geothermal energy: Power plant technology and direct heat applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 889-901.
    17. Tchanche, Bertrand F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2011. "Low-grade heat conversion into power using organic Rankine cycles – A review of various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3963-3979.
    18. Unternährer, Jérémy & Moret, Stefano & Joost, Stéphane & Maréchal, François, 2017. "Spatial clustering for district heating integration in urban energy systems: Application to geothermal energy," Applied Energy, Elsevier, vol. 190(C), pages 749-763.
    19. Feng, Guanhong & Wang, Yu & Xu, Tianfu & Wang, Fugang & Shi, Yan, 2021. "Multiphase flow modeling and energy extraction performance for supercritical geothermal systems," Renewable Energy, Elsevier, vol. 173(C), pages 442-454.
    20. Alper Baba, 2015. "Application of geothermal energy and its environmental problems in Turkey," International Journal of Global Environmental Issues, Inderscience Enterprises Ltd, vol. 14(3/4), pages 321-331.
    21. John W. Lund, 2010. "Direct Utilization of Geothermal Energy," Energies, MDPI, vol. 3(8), pages 1-29, August.
    22. Imroz Sohel, M. & Sellier, Mathieu & Brackney, Larry J. & Krumdieck, Susan, 2009. "Efficiency improvement for geothermal power generation to meet summer peak demand," Energy Policy, Elsevier, vol. 37(9), pages 3370-3376, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiao, Mingzheng & Jing, Zefeng & Feng, Chenchen & Li, Minghui & Chen, Cheng & Zou, Xupeng & Zhou, Yujuan, 2024. "Review on heat extraction systems of hot dry rock: Classifications, benefits, limitations, research status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    2. Walmsley, Timothy Gordon & Philipp, Matthias & Picón-Núñez, Martín & Meschede, Henning & Taylor, Matthew Thomas & Schlosser, Florian & Atkins, Martin John, 2023. "Hybrid renewable energy utility systems for industrial sites: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Tomasz Sliwa & Aneta Sapińska-Śliwa & Andrzej Gonet & Tomasz Kowalski & Anna Sojczyńska, 2021. "Geothermal Boreholes in Poland—Overview of the Current State of Knowledge," Energies, MDPI, vol. 14(11), pages 1-21, June.
    4. Wang, Gaosheng & Song, Xianzhi & Shi, Yu & Yang, Ruiyue & Yulong, Feixue & Zheng, Rui & Li, Jiacheng, 2021. "Heat extraction analysis of a novel multilateral-well coaxial closed-loop geothermal system," Renewable Energy, Elsevier, vol. 163(C), pages 974-986.
    5. Linkai Li & Xiao Guo & Ming Zhou & Gang Xiang & Ning Zhang & Yue Wang & Shengyuan Wang & Arnold Landjobo Pagou, 2021. "The Investigation of Fracture Networks on Heat Extraction Performance for an Enhanced Geothermal System," Energies, MDPI, vol. 14(6), pages 1-18, March.
    6. Wang, Yuqing & Liu, Yingxin & Dou, Jinyue & Li, Mingzhu & Zeng, Ming, 2020. "Geothermal energy in China: Status, challenges, and policy recommendations," Utilities Policy, Elsevier, vol. 64(C).
    7. Colmenar-Santos, Antonio & Folch-Calvo, Martin & Rosales-Asensio, Enrique & Borge-Diez, David, 2016. "The geothermal potential in Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 865-886.
    8. Anderson, Austin & Rezaie, Behnaz, 2019. "Geothermal technology: Trends and potential role in a sustainable future," Applied Energy, Elsevier, vol. 248(C), pages 18-34.
    9. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Liu, Xuemei & Liu, Hongliang, 2020. "Analysis on the heat extraction performance of multi-well injection enhanced geothermal system based on leaf-like bifurcated fracture networks," Energy, Elsevier, vol. 213(C).
    10. Wang, Lv & Ge, Zhong & Xu, Jian & Xie, Jianbin & Xie, Zhiyong, 2023. "Thermo-economic evaluations of novel dual-heater regenerative organic flash cycle (DROFC)," Energy, Elsevier, vol. 283(C).
    11. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu, 2020. "Study on the effect of well layout schemes and fracture parameters on the heat extraction performance of enhanced geothermal system in fractured reservoir," Energy, Elsevier, vol. 202(C).
    12. Li, Yuwei & Peng, Genbo & Du, Tong & Jiang, Liangliang & Kong, Xiang-Zhao, 2024. "Advancing fractured geothermal system modeling with artificial neural network and bidirectional gated recurrent unit," Applied Energy, Elsevier, vol. 372(C).
    13. Xue, Zhenqian & Zhang, Kai & Zhang, Chi & Ma, Haoming & Chen, Zhangxin, 2023. "Comparative data-driven enhanced geothermal systems forecasting models: A case study of Qiabuqia field in China," Energy, Elsevier, vol. 280(C).
    14. Li, Jian & Peng, Xiayao & Yang, Zhen & Hu, Shuozhuo & Duan, Yuanyuan, 2022. "Design, improvements and applications of dual-pressure evaporation organic Rankine cycles: A review," Applied Energy, Elsevier, vol. 311(C).
    15. Anya, Belka & Mohammadpourfard, Mousa & Akkurt, Gülden Gökçen & Mohammadi-Ivatloo, Behnam, 2025. "Exploring geothermal energy based systems: Review from basics to smart systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    16. Damian Janiga & Jakub Kwaśnik & Paweł Wojnarowski, 2022. "Utilization of Discrete Fracture Network (DFN) in Modelling and Simulation of a Horizontal Well-Doublet Enhanced Geothermal System (EGS) with Sensitivity Analysis of Key Production Parameters," Energies, MDPI, vol. 15(23), pages 1-19, November.
    17. Zhou, Luming & Zhu, Zhende & Xie, Xinghua & Hu, Yunjin, 2022. "Coupled thermal–hydraulic–mechanical model for an enhanced geothermal system and numerical analysis of its heat mining performance," Renewable Energy, Elsevier, vol. 181(C), pages 1440-1458.
    18. Gkousis, Spiros & Welkenhuysen, Kris & Compernolle, Tine, 2022. "Deep geothermal energy extraction, a review on environmental hotspots with focus on geo-technical site conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    19. Jiang, Sheng & Chen, Chen & Zhang, Shanling & Xu, Zhenhua & Liu, Xiang & Tu, Guigang & Zhao, Songying, 2025. "Thermo-Hydro-Mechanical coupling analysis of spiral wellbores in horizontal wells for heat extraction from hot dry rock: A case study of the Gonghe Basin, Qinghai, China," Energy, Elsevier, vol. 319(C).
    20. Yu, Zeting & Feng, Chunyu & Lai, Yanhua & Xu, Guoping & Wang, Daohan, 2022. "Performance assessment and optimization of two novel cogeneration systems integrating proton exchange membrane fuel cell with organic flash cycle for low temperature geothermal heat recovery," Energy, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:238:y:2025:i:c:s0960148124019165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.