IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v227y2024ics0960148124005482.html
   My bibliography  Save this article

Numerical assessment and optimization of photovoltaic-based hydrogen-oxygen Co-production energy system: A machine learning and multi-objective strategy

Author

Listed:
  • Wang, Ningbo
  • Guo, Yanhua
  • Liu, Lu
  • Shao, Shuangquan

Abstract

Green hydrogen production technology based on photovoltaic (PV), battery energy storage system (BESS) and proton exchange membrane (PEM) water electrolysis plays a crucial part in the transition process of energy to zero carbon technology. But few studies have focused on achieving all-day continuous hydrogen production, which is the key to large-scale hydrogen utilization. In this study, we developed an off-grid PV-BESS-PEM system for hydrogen and oxygen production. Firstly, the PV, BESS and PEM water electrolysis components were modeled and model validation was performed. Secondly, an energy management strategy (EMS) is proposed to achieve the goal of continuous and stable hydrogen production. Then, a surrogate model between design variables and optimization objectives is established based on machine learning methods, and a multi-objective optimization algorithm is used to drive the optimization process. Finally, a case study of the PV-BESS-PEM system is presented based on solar irradiation data in Lhasa, where there is sufficient solar resources and oxygen demand. The results demonstrate that the EMS can satisfy the purpose of all-day continuous and stable hydrogen production. The number of cells in the electrolyzer and the water temperature have a significant effect on the hydrogen production and the electrolysis efficiency. And the optimal system has increased the hydrogen production by 16.80 % and the electrolysis efficiency of PEM by 12.08 %, respectively. Herein, the methodological framework is expected to provide theoretical guidance for large-scale water electrolysis hydrogen production applications based on solar energy.

Suggested Citation

  • Wang, Ningbo & Guo, Yanhua & Liu, Lu & Shao, Shuangquan, 2024. "Numerical assessment and optimization of photovoltaic-based hydrogen-oxygen Co-production energy system: A machine learning and multi-objective strategy," Renewable Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124005482
    DOI: 10.1016/j.renene.2024.120483
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124005482
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120483?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124005482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.