A gradient porous transport layer enabling a high-performance proton-exchange membrane electrolysis cell
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2024.121707
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Xu, Boshi & Yang, Yang & Li, Jun & Wang, Yang & Ye, Dingding & Zhang, Liang & Zhu, Xun & Liao, Qiang, 2024. "Computational assessment of response to fluctuating load of renewable energy in proton exchange membrane water electrolyzer," Renewable Energy, Elsevier, vol. 232(C).
- Yang, Jingze & Chi, Hetian & Cheng, Mohan & Dong, Mingqi & Li, Siwu & Yao, Hong, 2023. "Performance analysis of hydrogen supply using curtailed power from a solar-wind-storage power system," Renewable Energy, Elsevier, vol. 212(C), pages 1005-1019.
- Gu, Xufei & Ying, Zhi & Zheng, Xiaoyuan & Dou, Binlin & Cui, Guomin, 2023. "Photovoltaic-based energy system coupled with energy storage for all-day stable PEM electrolytic hydrogen production," Renewable Energy, Elsevier, vol. 209(C), pages 53-62.
- Mo, Jingke & Kang, Zhenye & Yang, Gaoqiang & Retterer, Scott T. & Cullen, David A. & Toops, Todd J. & Green, Johney B. & Zhang, Feng-Yuan, 2016. "Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting," Applied Energy, Elsevier, vol. 177(C), pages 817-822.
- Carlson, Ewa Lazarczyk & Pickford, Kit & Nyga-Łukaszewska, Honorata, 2023. "Green hydrogen and an evolving concept of energy security: Challenges and comparisons," Renewable Energy, Elsevier, vol. 219(P1).
- Espinosa-López, Manuel & Darras, Christophe & Poggi, Philippe & Glises, Raynal & Baucour, Philippe & Rakotondrainibe, André & Besse, Serge & Serre-Combe, Pierre, 2018. "Modelling and experimental validation of a 46 kW PEM high pressure water electrolyzer," Renewable Energy, Elsevier, vol. 119(C), pages 160-173.
- Kang, Zhenye & Yang, Gaoqiang & Mo, Jingke, 2024. "Development of an ultra-thin electrode for the oxygen evolution reaction in proton exchange membrane water electrolyzers," Renewable Energy, Elsevier, vol. 224(C).
- Dar, Javaid & Asif, Mohammad, 2023. "Environmental feasibility of a gradual shift from fossil fuels to renewable energy in India: Evidence from multiple structural breaks cointegration," Renewable Energy, Elsevier, vol. 202(C), pages 589-601.
- Shiva Kumar, S. & Himabindu, V., 2020. "Boron-Doped Carbon nanoparticles supported palladium as an efficient hydrogen evolution electrode in PEM water electrolysis," Renewable Energy, Elsevier, vol. 146(C), pages 2281-2290.
- Kang, Zhenye & Mo, Jingke & Yang, Gaoqiang & Li, Yifan & Talley, Derrick A. & Retterer, Scott T. & Cullen, David A. & Toops, Todd J. & Brady, Michael P. & Bender, Guido & Pivovar, Bryan S. & Green, Jo, 2017. "Thin film surface modifications of thin/tunable liquid/gas diffusion layers for high-efficiency proton exchange membrane electrolyzer cells," Applied Energy, Elsevier, vol. 206(C), pages 983-990.
- Boretti, Alberto & Castelletto, Stefania, 2024. "Hydrogen energy storage requirements for solar and wind energy production to account for long-term variability," Renewable Energy, Elsevier, vol. 221(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- El-Nowihy, Ghada H. & Abdellatif, Mohammad M. & El-Deab, Mohamed S., 2024. "Magnetic field-assisted water splitting at ternary NiCoFe magnetic Nanocatalysts: Optimization study," Renewable Energy, Elsevier, vol. 226(C).
- Lin, Jianhui & Gu, Yujiong & Wang, Zijie & Zhao, Ziliang & Zhu, Ping, 2024. "Operational characteristics of an integrated island energy system based on multi-energy complementarity," Renewable Energy, Elsevier, vol. 230(C).
- Yang, Gaoqiang & Mo, Jingke & Kang, Zhenye & Dohrmann, Yeshi & List, Frederick A. & Green, Johney B. & Babu, Sudarsanam S. & Zhang, Feng-Yuan, 2018. "Fully printed and integrated electrolyzer cells with additive manufacturing for high-efficiency water splitting," Applied Energy, Elsevier, vol. 215(C), pages 202-210.
- Renaudineau, Hugues & Llor, Ana M. & Hernandez, Matias S. & Concha, Diego & Wilson-Veas, Alan H. & Kouro, Samir, 2024. "Photovoltaic to electrolysis off-grid green hydrogen production with DC–DC conversion," Renewable Energy, Elsevier, vol. 237(PC).
- Sun, Mingjia & Zhang, Yumeng & Liu, Luyao & Nian, Xingheng & Zhang, Hanfei & Duan, Liqiang, 2025. "Dynamic performance analysis of hydrogen production and hot standby dual-mode system via proton exchange membrane electrolyzer and phase change material-based heat storage," Applied Energy, Elsevier, vol. 377(PC).
- Xu, Boshi & Yang, Yang & Li, Jun & Wang, Yang & Ye, Dingding & Zhang, Liang & Zhu, Xun & Liao, Qiang, 2024. "Computational assessment of response to fluctuating load of renewable energy in proton exchange membrane water electrolyzer," Renewable Energy, Elsevier, vol. 232(C).
- Lin, Rui & Tang, Shenghao & Diao, Xiaoyu & Zhong, Di & Chen, Liang & Froning, Dieter & Hao, Zhixian, 2020. "Detailed optimization of multiwall carbon nanotubes doped microporous layer in polymer electrolyte membrane fuel cells for enhanced performance," Applied Energy, Elsevier, vol. 274(C).
- Kariuki, Boniface Wainaina & Emam, Mohamed & Ookawara, Shinichi & Hassan, Hamdy, 2024. "New hybrid system of PV/T, solar collectors, PEM electrolyzer, and HDH for hydrogen and freshwater production: Seasonal performance investigation," Energy, Elsevier, vol. 312(C).
- Chen, Jingxian & Wang, Sen & Sun, Yongwen & Zhang, Cunman & Lv, Hong, 2025. "Multi-dimensional performance evaluation and energy analysis of proton exchange membrane water electrolyzer," Applied Energy, Elsevier, vol. 377(PB).
- Damien Guilbert & Gianpaolo Vitale, 2019. "Dynamic Emulation of a PEM Electrolyzer by Time Constant Based Exponential Model," Energies, MDPI, vol. 12(4), pages 1-17, February.
- Zhu, Yanxi & Zhang, Yixiang & Bin, Shiyu & Chen, Zeyi & Zhang, Fanhang & Gong, Shihao & Xia, Yan & Duan, Xiongbo, 2024. "Effects of key design and operating parameters on the performance of the PEM water electrolysis for hydrogen production," Renewable Energy, Elsevier, vol. 235(C).
- Makhsoos, Ashkan & Kandidayeni, Mohsen & Boulon, Loïc & Pollet, Bruno G., 2023. "A comparative analysis of single and modular proton exchange membrane water electrolyzers for green hydrogen production- a case study in Trois-Rivières," Energy, Elsevier, vol. 282(C).
- Qiu, Xiaoyan & Zhang, Hang & Qiu, Yiwei & Zhou, Yi & Zang, Tianlei & Zhou, Buxiang & Qi, Ruomei & Lin, Jin & Wang, Jiepeng, 2023. "Dynamic parameter estimation of the alkaline electrolysis system combining Bayesian inference and adaptive polynomial surrogate models," Applied Energy, Elsevier, vol. 348(C).
- Zhang, Shuo & Geng, Zihan & Li, Yingzi & Li, Xinxin & Chen, Li, 2024. "A novel two-stage optimal layout model of hydrogen refueling facility network based on green electricity hydrogen production: Beijing-Tianjin-Hebei region of China as case study," Renewable Energy, Elsevier, vol. 237(PB).
- Francisco L. D. Simões & Diogo M. F. Santos, 2024. "A SWOT Analysis of the Green Hydrogen Market," Energies, MDPI, vol. 17(13), pages 1-23, June.
- Alrobaian, Abdulrahman A. & Alsagri, Ali Sulaiman, 2024. "Analysis of the effect of component size and demand pattern on the final price for a green hydrogen production system," Energy, Elsevier, vol. 307(C).
- Arias, Ignacio & Battisti, Felipe G. & Romero-Ramos, J.A. & Pérez, Manuel & Valenzuela, Loreto & Cardemil, José & Escobar, Rodrigo, 2024. "Assessing system-level synergies between photovoltaic and proton exchange membrane electrolyzers for solar-powered hydrogen production," Applied Energy, Elsevier, vol. 368(C).
- Liu, Hongwei & Ren, He & Gu, Yajing & Lin, Yonggang & Hu, Weifei & Song, Jiajun & Yang, Jinhong & Zhu, Zengxin & Li, Wei, 2023. "Design and on-site implementation of an off-grid marine current powered hydrogen production system," Applied Energy, Elsevier, vol. 330(PB).
- Munonde, Tshimangadzo S. & Zheng, Haitao & Matseke, Mphoma S. & Nomngongo, Philiswa N. & Wang, Yi & Tsiakaras, Panagiotis, 2020. "A green approach for enhancing the electrocatalytic activity and stability of NiFe2O4/CB nanospheres towards hydrogen production," Renewable Energy, Elsevier, vol. 154(C), pages 704-714.
- Ying Yan & Ridwan Lanre Ibrahim & Mamdouh Abdulaziz Saleh Al-Faryan & David Mautin Oke, 2023. "Embracing Eco-Digitalization and Green Finance Policies for Sustainable Environment: Do the Engagements of Multinational Corporations Make or Mar the Target for Selected MENA Countries?," Sustainability, MDPI, vol. 15(15), pages 1-18, August.
More about this item
Keywords
Proton exchange membrane electrolysis cell; Gradient porous transport layer; Mass transport; Hydrogen production;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124017750. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.