IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v222y2024ics096014812301683x.html
   My bibliography  Save this article

A resilient and intelligent multi-objective energy management for a hydrogen-battery hybrid energy storage system based on MFO technique

Author

Listed:
  • Elkholy, M.H.
  • Senjyu, Tomonobu
  • Metwally, Hamid
  • Farahat, M.A.
  • Irshad, Ahmad Shah
  • Hemeida, Ashraf M.
  • Lotfy, Mohammed Elsayed

Abstract

In this paper, a new design and flexible energy management strategy are presented for microgrids. The proposed intelligent energy management system (IEMS) achieves effective integration between the resilient microcontroller, chosen for its rapid response speed and its capability to perform multiple operations simultaneously, and the optimization techniques to enhance the power quality. The IEMS is designed using the FPGA board, chosen for its flexibility and capability to handle multiple and complex operations simultaneously. The experimental testing of the IEMS demonstrates a significant level of effectiveness in managing energy. To enhance system performance and ensure cost-effective reliability, advanced optimization techniques are employed. This study deals with a complex multi-objective optimization problem involving the limitations of energy generation, load demand, and a hydrogen-battery hybrid energy storage system. The moth-flame optimization (MFO) algorithm is chosen to solve this optimization problem due to its rapid convergence rate and accuracy. The effectiveness of the MFO algorithm is assessed by comparing it with several new algorithms. The obtained results show the robust performance of the IEMS and its high responsiveness to dynamic operational scenarios. It can observe, gather, and analyze data in real-time. It achieves a remarkable 1.287 % reduction in operating costs within a short timeframe.

Suggested Citation

  • Elkholy, M.H. & Senjyu, Tomonobu & Metwally, Hamid & Farahat, M.A. & Irshad, Ahmad Shah & Hemeida, Ashraf M. & Lotfy, Mohammed Elsayed, 2024. "A resilient and intelligent multi-objective energy management for a hydrogen-battery hybrid energy storage system based on MFO technique," Renewable Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:renene:v:222:y:2024:i:c:s096014812301683x
    DOI: 10.1016/j.renene.2023.119768
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812301683X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119768?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:222:y:2024:i:c:s096014812301683x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.