IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i5p2599-d756965.html
   My bibliography  Save this article

Experimental and Simulation Study Investigating the Effect of a Transparent Pyramidal Cover on PV Cell Performance

Author

Listed:
  • Adel Alblawi

    (Mechanical Engineering Department, College of Engineering, Shaqra University, Ar Riyadh 11911, Saudi Arabia)

  • M. Talaat

    (Electrical Engineering Department, College of Engineering, Shaqra University, Ar Riyadh 11911, Saudi Arabia
    Electrical Power and Machines Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
    Mechatronics Department, Faculty of Engineering and Technology, Egyptian Chinese University, Cairo 11787, Egypt)

Abstract

Photovoltaic (PV) systems are a very popular energy conversion system for electric energy supply due to their ease of connection and fast rate of conversion. However, a disadvantage of these systems is their low efficiency. Many techniques have been proposed to enhance the efficiency of PV systems. In this article, numerical and experimental studies were performed to test the effect of pyramidal transparent covers made of Perspex on the incident radiation reaching PV panels. The energy of light depends on the electric field, and the electric field depends on the permittivity. As the relative permittivity of Perspex is higher than the relative permittivity of air, the energy of the panel with the pyramidal Perspex cover is higher than the energy of the panel without pyramids. In addition, the total irradiance reaching the base of the pyramids was investigated in order to show the effect of the incidence angle on the computed irradiance. A 3D model was constructed and tested with different pyramidal cover dimensions and incidence angles. The tested dimensions were height to base length ratios of 1.5, 1.0, and 0.5. It was found that pyramidal covers with a height to base length ratio of 1.0 achieved the best performance of the three sizes. The simulation model was applied in order to study the solar radiation model for the solar panel with and without pyramids. Two parameters were studied in order to show the effect of the pyramidal covers on solar panel irradiance; these parameters used three different sizes of pyramids to study the effect of changing the incidence angle of the radiation source. The model was constructed in ANSYS-ICEM, then the mesh was exported to FLUENT 14.5. Moreover, the incident radiation on the panel for all tested incidence angles was found to be higher than for the panels without covers. In addition, the existence of the pyramidal cover was found to enhance the homogeneity of the distribution incident of rays on the PV panels. In the case of pyramids with R = 1, enhancement became clear at an incidence angle ranging from 69° to 90°, and the percentage increase in the energy fraction reached 0.2%.

Suggested Citation

  • Adel Alblawi & M. Talaat, 2022. "Experimental and Simulation Study Investigating the Effect of a Transparent Pyramidal Cover on PV Cell Performance," Sustainability, MDPI, vol. 14(5), pages 1-30, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2599-:d:756965
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/5/2599/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/5/2599/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adel Alblawi & M. H. Elkholy & M. Talaat, 2019. "ANN for Assessment of Energy Consumption of 4 kW PV Modules over a Year Considering the Impacts of Temperature and Irradiance," Sustainability, MDPI, vol. 11(23), pages 1-24, November.
    2. Talaat, M. & Elkholy, M.H. & Farahat, M.A., 2020. "Operating reserve investigation for the integration of wave, solar and wind energies," Energy, Elsevier, vol. 197(C).
    3. Essa, Mohamed A. & Talaat, M. & Amer, Abdalla & Farahat, M.A., 2021. "Enhancing the photovoltaic system efficiency using porous metallic media integrated with phase change material," Energy, Elsevier, vol. 225(C).
    4. Hao Cai & Ling Liang & Jing Tang & Qianxian Wang & Lihong Wei & Jiaping Xie, 2019. "An Empirical Study on the Efficiency and Influencing Factors of the Photovoltaic Industry in China and an Analysis of Its Influencing Factors," Sustainability, MDPI, vol. 11(23), pages 1-22, November.
    5. Marcos A. Ponce-Jara & Carlos Velásquez-Figueroa & María Reyes-Mero & Catalina Rus-Casas, 2022. "Performance Comparison between Fixed and Dual-Axis Sun-Tracking Photovoltaic Panels with an IoT Monitoring System in the Coastal Region of Ecuador," Sustainability, MDPI, vol. 14(3), pages 1-14, February.
    6. Xuebo Liu & Yingying Wu & Hongyu Wu, 2021. "PV-EV Integrated Home Energy Management Considering Residential Occupant Behaviors," Sustainability, MDPI, vol. 13(24), pages 1-20, December.
    7. Talaat, M. & Farahat, M.A. & Elkholy, M.H., 2019. "Renewable power integration: Experimental and simulation study to investigate the ability of integrating wave, solar and wind energies," Energy, Elsevier, vol. 170(C), pages 668-682.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elkholy, M.H. & Metwally, Hamid & Farahat, M.A. & Senjyu, Tomonobu & Elsayed Lotfy, Mohammed, 2022. "Smart centralized energy management system for autonomous microgrid using FPGA," Applied Energy, Elsevier, vol. 317(C).
    2. Issoufou Tahirou Halidou & Harun Or Rashid Howlader & Mahmoud M. Gamil & M. H. Elkholy & Tomonobu Senjyu, 2023. "Optimal Power Scheduling and Techno-Economic Analysis of a Residential Microgrid for a Remotely Located Area: A Case Study for the Sahara Desert of Niger," Energies, MDPI, vol. 16(8), pages 1-23, April.
    3. Elkholy, M.H. & Elymany, Mahmoud & Metwally, Hamid & Farahat, M.A. & Senjyu, Tomonobu & Elsayed Lotfy, Mohammed, 2022. "Design and implementation of a Real-time energy management system for an isolated Microgrid: Experimental validation," Applied Energy, Elsevier, vol. 327(C).
    4. Mahmoud H. Elkholy & Tomonobu Senjyu & Mohammed Elsayed Lotfy & Abdelrahman Elgarhy & Nehad S. Ali & Tamer S. Gaafar, 2022. "Design and Implementation of a Real-Time Smart Home Management System Considering Energy Saving," Sustainability, MDPI, vol. 14(21), pages 1-22, October.
    5. Essa, Mohamed A. & Talaat, M. & Amer, Abdalla & Farahat, M.A., 2021. "Enhancing the photovoltaic system efficiency using porous metallic media integrated with phase change material," Energy, Elsevier, vol. 225(C).
    6. Elkholy, M.H. & Senjyu, Tomonobu & Elymany, Mahmoud & Gamil, Mahmoud M. & Talaat, M. & Masrur, Hasan & Ueda, Soichiro & Lotfy, Mohammed Elsayed, 2024. "Optimal resilient operation and sustainable power management within an autonomous residential microgrid using African vultures optimization algorithm," Renewable Energy, Elsevier, vol. 224(C).
    7. Hameedullah Zaheb & Mikaeel Ahmadi & Nisar Ahmad Rahmany & Mir Sayed Shah Danish & Habibullah Fedayi & Atsushi Yona, 2023. "Optimal Grid Flexibility Assessment for Integration of Variable Renewable-Based Electricity Generation," Sustainability, MDPI, vol. 15(20), pages 1-24, October.
    8. Liu, Junwei & Tang, Huajie & Zhang, Debao & Jiao, Shifei & Zhou, Zhihua & Zhang, Zhuofen & Ling, Jihong & Zuo, Jian, 2020. "Performance evaluation of the hybrid photovoltaic-thermoelectric system with light and heat management," Energy, Elsevier, vol. 211(C).
    9. Elkholy, M.H. & Senjyu, Tomonobu & Metwally, Hamid & Farahat, M.A. & Irshad, Ahmad Shah & Hemeida, Ashraf M. & Lotfy, Mohammed Elsayed, 2024. "A resilient and intelligent multi-objective energy management for a hydrogen-battery hybrid energy storage system based on MFO technique," Renewable Energy, Elsevier, vol. 222(C).
    10. Piciu Gabriela-Cornelia, 2021. "Decarbonisation Of Economy In Romania," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 5, pages 98-104, October.
    11. Haicheng Jia & Ling Liang & Jiqing Xie & Jianyun Zhang, 2022. "Environmental Effects of Technological Improvements in Polysilicon Photovoltaic Systems in China—A Life Cycle Assessment," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    12. Joseph Nyangon & Ruth Akintunde, 2024. "Anomaly Detection in California Electricity Price Forecasting: Enhancing Accuracy and Reliability Using Principal Component Analysis," Papers 2412.07787, arXiv.org.
    13. Talaat, M. & Hatata, A.Y. & Alsayyari, Abdulaziz S. & Alblawi, Adel, 2020. "A smart load management system based on the grasshopper optimization algorithm using the under-frequency load shedding approach," Energy, Elsevier, vol. 190(C).
    14. Sricharan, V.V.S. & Chandrasekaran, Srinivasan, 2021. "Time-domain analysis of a bean-shaped multi-body floating wave energy converter with a hydraulic power take-off using WEC-Sim," Energy, Elsevier, vol. 223(C).
    15. Gönül, Ömer & Yazar, Fatih & Duman, A. Can & Güler, Önder, 2022. "A comparative techno-economic assessment of manually adjustable tilt mechanisms and automatic solar trackers for behind-the-meter PV applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    16. Pratibha Rani & Arunodaya Raj Mishra & Abbas Mardani & Fausto Cavallaro & Dalia Štreimikienė & Syed Abdul Rehman Khan, 2020. "Pythagorean Fuzzy SWARA–VIKOR Framework for Performance Evaluation of Solar Panel Selection," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    17. Brumana, Giovanni & Franchini, Giuseppe & Ghirardi, Elisa & Perdichizzi, Antonio, 2022. "Techno-economic optimization of hybrid power generation systems: A renewables community case study," Energy, Elsevier, vol. 246(C).
    18. Luning Shao & Jianxin You & Tao Xu & Yilei Shao, 2020. "Non-Parametric Model for Evaluating the Performance of Chinese Commercial Banks’ Product Innovation," Sustainability, MDPI, vol. 12(4), pages 1-15, February.
    19. Cheng, Yong & Li, Gen & Ji, Chunyan & Fan, Tianhui & Zhai, Gangjun, 2020. "Fully nonlinear investigations on performance of an OWSC (oscillating wave surge converter) in 3D (three-dimensional) open water," Energy, Elsevier, vol. 210(C).
    20. Hu, Wenyu & E, Jiaqiang & Tan, Yan & Zhang, Feng & Liao, Gaoliang, 2022. "Modified wind energy collection devices for harvesting convective wind energy from cars and trucks moving in the highway," Energy, Elsevier, vol. 247(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2599-:d:756965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.