IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i8p3471-d1124400.html
   My bibliography  Save this article

Optimal Power Scheduling and Techno-Economic Analysis of a Residential Microgrid for a Remotely Located Area: A Case Study for the Sahara Desert of Niger

Author

Listed:
  • Issoufou Tahirou Halidou

    (Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nakagami-Gun, Nishihara-Cho, Okinawa 903-0213, Japan)

  • Harun Or Rashid Howlader

    (Hawai’i Natural Energy Institute, University of Hawai’i at Manoa, Honolulu, HI 96822, USA)

  • Mahmoud M. Gamil

    (Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nakagami-Gun, Nishihara-Cho, Okinawa 903-0213, Japan
    Department of Electrical Power and Machines, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt)

  • M. H. Elkholy

    (Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nakagami-Gun, Nishihara-Cho, Okinawa 903-0213, Japan
    Department of Electrical Power and Machines, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt)

  • Tomonobu Senjyu

    (Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nakagami-Gun, Nishihara-Cho, Okinawa 903-0213, Japan)

Abstract

The growing demand for electricity and the reconstruction of poor areas in Africa require an effective and reliable energy supply system. The construction of reliable, clean, and inexpensive microgrids, whether isolated or connected to the main grid, has great importance in solving energy supply problems in remote desert areas. It is a complex interaction between the level of reliability, economical operation, and reduced emissions. This paper investigates the establishment of an efficient and cost-effective microgrid in a remote area located in the Djado Plateau, which lies in the Sahara Ténéré desert in northeastern Niger. Three cases are presented and compared to find the best one in terms of low costs. In case 1, the residential area is supplied by PVs and a battery energy storage system (BESS), while in the second case, PVs, a BESS, and a diesel generator (DG) are utilized to supply the load. In the third case, the grid will take on load-feeding responsibilities alongside PVs, a BESS, and a DG (used only in scenario 1 during the 2 h grid outage). The central objective is to lower the cost of the proposed microgrid. Among the three cases, case 3, scenario 2 has the lowest LCC, but implementing it is difficult because of the nature of the site. The results show that case 2 is the best in terms of total life cycle cost (LCC) and no grid dependency, as the annual total LCC reaches about $2,362,997. In this second case, the LCC is 11.19% lower compared to the first case and 5.664% lower compared to the third case, scenario 1.

Suggested Citation

  • Issoufou Tahirou Halidou & Harun Or Rashid Howlader & Mahmoud M. Gamil & M. H. Elkholy & Tomonobu Senjyu, 2023. "Optimal Power Scheduling and Techno-Economic Analysis of a Residential Microgrid for a Remotely Located Area: A Case Study for the Sahara Desert of Niger," Energies, MDPI, vol. 16(8), pages 1-23, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3471-:d:1124400
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/8/3471/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/8/3471/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ali, Fahad & Ahmar, Muhammad & Jiang, Yuexiang & AlAhmad, Mohammad, 2021. "A techno-economic assessment of hybrid energy systems in rural Pakistan," Energy, Elsevier, vol. 215(PA).
    2. Rullo, P. & Braccia, L. & Luppi, P. & Zumoffen, D. & Feroldi, D., 2019. "Integration of sizing and energy management based on economic predictive control for standalone hybrid renewable energy systems," Renewable Energy, Elsevier, vol. 140(C), pages 436-451.
    3. Odou, Oluwarotimi Delano Thierry & Bhandari, Ramchandra & Adamou, Rabani, 2020. "Hybrid off-grid renewable power system for sustainable rural electrification in Benin," Renewable Energy, Elsevier, vol. 145(C), pages 1266-1279.
    4. Elkholy, M.H. & Metwally, Hamid & Farahat, M.A. & Senjyu, Tomonobu & Elsayed Lotfy, Mohammed, 2022. "Smart centralized energy management system for autonomous microgrid using FPGA," Applied Energy, Elsevier, vol. 317(C).
    5. Adel Alblawi & M. H. Elkholy & M. Talaat, 2019. "ANN for Assessment of Energy Consumption of 4 kW PV Modules over a Year Considering the Impacts of Temperature and Irradiance," Sustainability, MDPI, vol. 11(23), pages 1-24, November.
    6. Talaat, M. & Elkholy, M.H. & Farahat, M.A., 2020. "Operating reserve investigation for the integration of wave, solar and wind energies," Energy, Elsevier, vol. 197(C).
    7. Zhao, Bo & Zhang, Xuesong & Li, Peng & Wang, Ke & Xue, Meidong & Wang, Caisheng, 2014. "Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on Dongfushan Island," Applied Energy, Elsevier, vol. 113(C), pages 1656-1666.
    8. Kaiye Gao & Tianshi Wang & Chenjing Han & Jinhao Xie & Ye Ma & Rui Peng, 2021. "A Review of Optimization of Microgrid Operation," Energies, MDPI, vol. 14(10), pages 1-39, May.
    9. Abbes, Dhaker & Martinez, André & Champenois, Gérard, 2014. "Life cycle cost, embodied energy and loss of power supply probability for the optimal design of hybrid power systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 98(C), pages 46-62.
    10. Md. Rashedul Islam & Homeyra Akter & Harun Or Rashid Howlader & Tomonobu Senjyu, 2022. "Optimal Sizing and Techno-Economic Analysis of Grid-Independent Hybrid Energy System for Sustained Rural Electrification in Developing Countries: A Case Study in Bangladesh," Energies, MDPI, vol. 15(17), pages 1-21, September.
    11. Nguyen, Kim Hanh & Kakinaka, Makoto, 2019. "Renewable energy consumption, carbon emissions, and development stages: Some evidence from panel cointegration analysis," Renewable Energy, Elsevier, vol. 132(C), pages 1049-1057.
    12. Fahd A. Alturki & Emad Mahrous Awwad, 2021. "Sizing and Cost Minimization of Standalone Hybrid WT/PV/Biomass/Pump-Hydro Storage-Based Energy Systems," Energies, MDPI, vol. 14(2), pages 1-20, January.
    13. Ramli, Makbul A.M. & Hiendro, Ayong & Twaha, Ssennoga, 2015. "Economic analysis of PV/diesel hybrid system with flywheel energy storage," Renewable Energy, Elsevier, vol. 78(C), pages 398-405.
    14. Fazlur Rashid & Md. Emdadul Hoque & Muhammad Aziz & Talukdar Nazmus Sakib & Md. Tariqul Islam & Raihan Moker Robin, 2021. "Investigation of Optimal Hybrid Energy Systems Using Available Energy Sources in a Rural Area of Bangladesh," Energies, MDPI, vol. 14(18), pages 1-24, September.
    15. Aili Amupolo & Sofia Nambundunga & Daniel S. P. Chowdhury & Gunnar Grün, 2022. "Techno-Economic Feasibility of Off-Grid Renewable Energy Electrification Schemes: A Case Study of an Informal Settlement in Namibia," Energies, MDPI, vol. 15(12), pages 1-32, June.
    16. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    17. Talaat, M. & Farahat, M.A. & Elkholy, M.H., 2019. "Renewable power integration: Experimental and simulation study to investigate the ability of integrating wave, solar and wind energies," Energy, Elsevier, vol. 170(C), pages 668-682.
    18. Elkholy, M.H. & Elymany, Mahmoud & Metwally, Hamid & Farahat, M.A. & Senjyu, Tomonobu & Elsayed Lotfy, Mohammed, 2022. "Design and implementation of a Real-time energy management system for an isolated Microgrid: Experimental validation," Applied Energy, Elsevier, vol. 327(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tayyab, Qudratullah & Qani, Nazir Ahmad & Elkholy, M.H. & Ahmed, Shoaib & Yona, Atsushi & Senjyu, Tomonobu, 2024. "Techno-economic configuration of an optimized resident microgrid: A case study for Afghanistan," Renewable Energy, Elsevier, vol. 224(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elkholy, M.H. & Senjyu, Tomonobu & Elymany, Mahmoud & Gamil, Mahmoud M. & Talaat, M. & Masrur, Hasan & Ueda, Soichiro & Lotfy, Mohammed Elsayed, 2024. "Optimal resilient operation and sustainable power management within an autonomous residential microgrid using African vultures optimization algorithm," Renewable Energy, Elsevier, vol. 224(C).
    2. Elkholy, M.H. & Elymany, Mahmoud & Metwally, Hamid & Farahat, M.A. & Senjyu, Tomonobu & Elsayed Lotfy, Mohammed, 2022. "Design and implementation of a Real-time energy management system for an isolated Microgrid: Experimental validation," Applied Energy, Elsevier, vol. 327(C).
    3. Abdullah Al Abri & Abdullah Al Kaaf & Musaab Allouyahi & Ali Al Wahaibi & Razzaqul Ahshan & Rashid S. Al Abri & Ahmed Al Abri, 2022. "Techno-Economic and Environmental Analysis of Renewable Mix Hybrid Energy System for Sustainable Electrification of Al-Dhafrat Rural Area in Oman," Energies, MDPI, vol. 16(1), pages 1-23, December.
    4. Mahmoud H. Elkholy & Tomonobu Senjyu & Mohammed Elsayed Lotfy & Abdelrahman Elgarhy & Nehad S. Ali & Tamer S. Gaafar, 2022. "Design and Implementation of a Real-Time Smart Home Management System Considering Energy Saving," Sustainability, MDPI, vol. 14(21), pages 1-22, October.
    5. Elkholy, M.H. & Metwally, Hamid & Farahat, M.A. & Senjyu, Tomonobu & Elsayed Lotfy, Mohammed, 2022. "Smart centralized energy management system for autonomous microgrid using FPGA," Applied Energy, Elsevier, vol. 317(C).
    6. Adel Alblawi & M. Talaat, 2022. "Experimental and Simulation Study Investigating the Effect of a Transparent Pyramidal Cover on PV Cell Performance," Sustainability, MDPI, vol. 14(5), pages 1-30, February.
    7. Tayyab, Qudratullah & Qani, Nazir Ahmad & Elkholy, M.H. & Ahmed, Shoaib & Yona, Atsushi & Senjyu, Tomonobu, 2024. "Techno-economic configuration of an optimized resident microgrid: A case study for Afghanistan," Renewable Energy, Elsevier, vol. 224(C).
    8. Das, Barun K. & Hasan, Mahmudul & Das, Pronob, 2021. "Impact of storage technologies, temporal resolution, and PV tracking on stand-alone hybrid renewable energy for an Australian remote area application," Renewable Energy, Elsevier, vol. 173(C), pages 362-380.
    9. Konneh, Keifa Vamba & Adewuyi, Oludamilare Bode & Gamil, Mahmoud M. & Fazli, Agha Mohammad & Senjyu, Tomonobu, 2023. "A scenario-based multi-attribute decision making approach for optimal design of a hybrid off-grid system," Energy, Elsevier, vol. 265(C).
    10. Konneh, Keifa Vamba & Masrur, Hasan & Konneh, David A. & Senjyu, Tomonobu, 2022. "Independent or complementary power system configuration: A decision making approach for sustainable electrification of an urban environment in Sierra Leone," Energy, Elsevier, vol. 239(PD).
    11. Elkholy, M.H. & Senjyu, Tomonobu & Metwally, Hamid & Farahat, M.A. & Irshad, Ahmad Shah & Hemeida, Ashraf M. & Lotfy, Mohammed Elsayed, 2024. "A resilient and intelligent multi-objective energy management for a hydrogen-battery hybrid energy storage system based on MFO technique," Renewable Energy, Elsevier, vol. 222(C).
    12. Hai Lu & Jiaquan Yang & Kari Alanne, 2018. "Energy Quality Management for a Micro Energy Network Integrated with Renewables in a Tourist Area: A Chinese Case Study," Energies, MDPI, vol. 11(4), pages 1-24, April.
    13. Lan, Hai & Wen, Shuli & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun, 2015. "Optimal sizing of hybrid PV/diesel/battery in ship power system," Applied Energy, Elsevier, vol. 158(C), pages 26-34.
    14. Nguyen, Hai Tra & Safder, Usman & Nhu Nguyen, X.Q. & Yoo, ChangKyoo, 2020. "Multi-objective decision-making and optimal sizing of a hybrid renewable energy system to meet the dynamic energy demands of a wastewater treatment plant," Energy, Elsevier, vol. 191(C).
    15. Wen, Shuli & Lan, Hai & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun & Cheng, Peng, 2016. "Allocation of ESS by interval optimization method considering impact of ship swinging on hybrid PV/diesel ship power system," Applied Energy, Elsevier, vol. 175(C), pages 158-167.
    16. Rahmat Khezri & Amin Mahmoudi & Hirohisa Aki & S. M. Muyeen, 2021. "Optimal Planning of Remote Area Electricity Supply Systems: Comprehensive Review, Recent Developments and Future Scopes," Energies, MDPI, vol. 14(18), pages 1-29, September.
    17. Silva, Jéssica Alice A. & López, Juan Camilo & Guzman, Cindy Paola & Arias, Nataly Bañol & Rider, Marcos J. & da Silva, Luiz C.P., 2023. "An IoT-based energy management system for AC microgrids with grid and security constraints," Applied Energy, Elsevier, vol. 337(C).
    18. Gbalimene Richard Ileberi & Pu Li, 2023. "Integrating Hydrokinetic Energy into Hybrid Renewable Energy System: Optimal Design and Comparative Analysis," Energies, MDPI, vol. 16(8), pages 1-28, April.
    19. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    20. Sarhan, Ameen & Hizam, Hashim & Mariun, Norman & Ya'acob, M.E., 2019. "An improved numerical optimization algorithm for sizing and configuration of standalone photo-voltaic system components in Yemen," Renewable Energy, Elsevier, vol. 134(C), pages 1434-1446.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3471-:d:1124400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.