IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v221y2024ics0960148123016853.html
   My bibliography  Save this article

Numerical simulation of the thermal response of seabed sediments to geothermal cycles in Suvilahti, Finland

Author

Listed:
  • Mohyla, Marek
  • Hrubesova, Eva
  • Martinkauppi, Birgitta
  • Mäkiranta, Anne
  • Tuomi, Ville

Abstract

Renewable thermal energy from seabed sediment is used for heating and cooling houses in Suvilahti, Vaasa, Finland. Innovative coaxial polyethylene pipes (Refla) filled with heat collection fluid are laid horizontally in the sediment layer. This study aims to evaluate the adequacy and possible overuse of this shallow geothermal energy. This entailed a numerical analysis of the heat relations of a “coaxial closed-loop geothermal system (CCGS)" to investigate the thermal behavior of the sediment. The numerical model was developed in Midas GTS NX software with a thermal analysis module. The objective was to understand temperature fluctuation in the sediment, which is influenced not only by geothermal energy exploitation, but also by seasonal weather. The numerical model, due to its design, provided information mainly about changes in sediment temperature due to the geothermal energy exploitation during the different seasons. The results show that in the first third of the total length of the Refla pipes, the sediment environment is significantly affected by energy exploitation's temperature loading. It is advisable to exclude the first third from an analysis of total geothermal energy reserves. The remaining two-thirds of the length shows potential to provide sustainable, long-term geothermal energy (GE) exploitation at the current rate.

Suggested Citation

  • Mohyla, Marek & Hrubesova, Eva & Martinkauppi, Birgitta & Mäkiranta, Anne & Tuomi, Ville, 2024. "Numerical simulation of the thermal response of seabed sediments to geothermal cycles in Suvilahti, Finland," Renewable Energy, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123016853
    DOI: 10.1016/j.renene.2023.119770
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123016853
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119770?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. António Marques & José Fuinhas & José Manso, 2011. "A Quantile Approach to Identify Factors Promoting Renewable Energy in European Countries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 49(3), pages 351-366, July.
    2. Self, Stuart J. & Reddy, Bale V. & Rosen, Marc A., 2013. "Geothermal heat pump systems: Status review and comparison with other heating options," Applied Energy, Elsevier, vol. 101(C), pages 341-348.
    3. Alam, Syed Shah & Nik Hashim, Nik Hazrul & Rashid, Mamunur & Omar, Nor Asiah & Ahsan, Nilufar & Ismail, Md Daud, 2014. "Small-scale households renewable energy usage intention: Theoretical development and empirical settings," Renewable Energy, Elsevier, vol. 68(C), pages 255-263.
    4. Kang, Jia-Ning & Wei, Yi-Ming & Liu, Lan-Cui & Han, Rong & Yu, Bi-Ying & Wang, Jin-Wei, 2020. "Energy systems for climate change mitigation: A systematic review," Applied Energy, Elsevier, vol. 263(C).
    5. Nguyen, Kim Hanh & Kakinaka, Makoto, 2019. "Renewable energy consumption, carbon emissions, and development stages: Some evidence from panel cointegration analysis," Renewable Energy, Elsevier, vol. 132(C), pages 1049-1057.
    6. Franceschinis, Cristiano & Thiene, Mara & Scarpa, Riccardo & Rose, John & Moretto, Michele & Cavalli, Raffaele, 2017. "Adoption of renewable heating systems: An empirical test of the diffusion of innovation theory," Energy, Elsevier, vol. 125(C), pages 313-326.
    7. Pietzcker, Robert C. & Osorio, Sebastian & Rodrigues, Renato, 2021. "Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector," Applied Energy, Elsevier, vol. 293(C).
    8. Ang, B.W. & Su, Bin, 2016. "Carbon emission intensity in electricity production: A global analysis," Energy Policy, Elsevier, vol. 94(C), pages 56-63.
    9. Aslani, Alireza & Helo, Petri & Naaranoja, Marja, 2014. "Role of renewable energy policies in energy dependency in Finland: System dynamics approach," Applied Energy, Elsevier, vol. 113(C), pages 758-765.
    10. Bhattacharya, Mita & Paramati, Sudharshan Reddy & Ozturk, Ilhan & Bhattacharya, Sankar, 2016. "The effect of renewable energy consumption on economic growth: Evidence from top 38 countries," Applied Energy, Elsevier, vol. 162(C), pages 733-741.
    11. Nebiyu Girgibo & Anne Mäkiranta & Xiaoshu Lü & Erkki Hiltunen, 2022. "Statistical Investigation of Climate Change Effects on the Utilization of the Sediment Heat Energy," Energies, MDPI, vol. 15(2), pages 1-28, January.
    12. Sanguinetti, Angela & Outcault, Sarah & Alston-Stepnitz, Eli & Moezzi, Mithra & Ingle, Aaron, 2021. "Residential solar water heating: California adopters and their experiences," Institute of Transportation Studies, Working Paper Series qt4rw591ft, Institute of Transportation Studies, UC Davis.
    13. Pietzcker, Robert & Osorio, Sebastian & Rodrigues, Renato, 2021. "Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector," EconStor Preprints 222579, ZBW - Leibniz Information Centre for Economics, revised 2021.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adekoya, Oluwasegun B. & Olabode, Joshua K. & Rafi, Syed K., 2021. "Renewable energy consumption, carbon emissions and human development: Empirical comparison of the trajectories of world regions," Renewable Energy, Elsevier, vol. 179(C), pages 1836-1848.
    2. Zhong, Meirui & Zhang, Rui & Ren, Xiaohang, 2023. "The time-varying effects of liquidity and market efficiency of the European Union carbon market: Evidence from the TVP-SVAR-SV approach," Energy Economics, Elsevier, vol. 123(C).
    3. Tan, Xiujie & Sun, Qian & Wang, Meiji & Se Cheong, Tsun & Yan Shum, Wai & Huang, Jinpeng, 2022. "Assessing the effects of emissions trading systems on energy consumption and energy mix," Applied Energy, Elsevier, vol. 310(C).
    4. Martina Ricci & Marcello Benvenuto & Stefano Gino Mosele & Roberto Pacciani & Michele Marconcini, 2022. "Predicting the Impact of Compressor Flexibility Improvements on Heavy-Duty Gas Turbines for Minimum and Base Load Conditions," Energies, MDPI, vol. 15(20), pages 1-14, October.
    5. Meles, Tensay Hadush & Ryan, Lisa & Mukherjee, Sanghamitra C., 2022. "Heterogeneity in preferences for renewable home heating systems among Irish households," Applied Energy, Elsevier, vol. 307(C).
    6. Hänsel, Martin C. & Franks, Max & Kalkuhl, Matthias & Edenhofer, Ottmar, 2022. "Optimal carbon taxation and horizontal equity: A welfare-theoretic approach with application to German household data," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    7. Andrés Ruiz & Florin Onea & Eugen Rusu, 2020. "Study Concerning the Expected Dynamics of the Wind Energy Resources in the Iberian Nearshore," Energies, MDPI, vol. 13(18), pages 1-25, September.
    8. Pashchenko, Dmitry & Mustafin, Ravil & Karpilov, Igor, 2022. "Ammonia-fired chemically recuperated gas turbine: Thermodynamic analysis of cycle and recuperation system," Energy, Elsevier, vol. 252(C).
    9. Chen, Chaoyi & Pinar, Mehmet & Stengos, Thanasis, 2021. "Determinants of renewable energy consumption: Importance of democratic institutions," Renewable Energy, Elsevier, vol. 179(C), pages 75-83.
    10. Sandu, Suwin & Yang, Muyi & Phoumin, Han & Aghdam, Reza Fathollahzadeh & Shi, Xunpeng, 2021. "Assessment of accessible, clean and efficient energy systems: A statistical analysis of composite energy performance indices," Applied Energy, Elsevier, vol. 304(C).
    11. Yang, Shuangpeng & umar, Muhammad, 2022. "How globalization is reshaping the environmental quality in G7 economies in the presence of renewable energy initiatives?," Renewable Energy, Elsevier, vol. 193(C), pages 128-135.
    12. Mariusz Pyra, 2023. "Simulation of the Progress of the Decarbonization Process in Poland’s Road Transport Sector," Energies, MDPI, vol. 16(12), pages 1-21, June.
    13. Luo, Shihua & Hu, Weihao & Liu, Wen & Zhang, Zhenyuan & Bai, Chunguang & Huang, Qi & Chen, Zhe, 2022. "Study on the decarbonization in China's power sector under the background of carbon neutrality by 2060," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    14. Finke, Jonas & Bertsch, Valentin, 2022. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," MPRA Paper 115504, University Library of Munich, Germany.
    15. Che, Shuai & Wang, Jun & Chen, Honghang, 2023. "Can China's decentralized energy governance reduce carbon emissions? Evidence from new energy demonstration cities," Energy, Elsevier, vol. 284(C).
    16. Kamila Pronińska & Krzysztof Księżopolski, 2021. "Baltic Offshore Wind Energy Development—Poland’s Public Policy Tools Analysis and the Geostrategic Implications," Energies, MDPI, vol. 14(16), pages 1-17, August.
    17. Andrew Chapman & Hidemichi Fujii, 2022. "The Potential Role of Flying Vehicles in Progressing the Energy Transition," Energies, MDPI, vol. 15(19), pages 1-11, October.
    18. Piotr Raźniak & Sławomir Dorocki & Tomasz Rachwał & Anna Winiarczyk-Raźniak, 2021. "The Role of the Energy Sector in the Command and Control Function of Cities in Conditions of Sustainability Transitions," Energies, MDPI, vol. 14(22), pages 1-14, November.
    19. Gabriel J. Felbermayr, 2021. "Steuerliche Aspekte der Klimapolitik: über Steuern, Zölle und Subventionen," Wirtschaftsdienst, Springer;ZBW - Leibniz Information Centre for Economics, vol. 101(6), pages 428-431, June.
    20. Alexey Cherepovitsyn & Gennady Stroykov & Alexander Nevolin, 2023. "Efficiency of Low-Carbon Technologies Implementation at Non-Ferrous Metallurgy Enterprises under the Conditions of Carbon-Regulation Development in Russia," Sustainability, MDPI, vol. 15(24), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123016853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.