IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v207y2023icp647-659.html
   My bibliography  Save this article

A two-stage dispatching optimization strategy for hybrid renewable energy system with low-carbon and sustainability in ancillary service market

Author

Listed:
  • Ding, Yihong
  • Tan, Qinliang
  • Shan, Zijing
  • Han, Jian
  • Zhang, Yimei

Abstract

Benefit distribution of hybrid renewable energy system is related to the sustainability of its operation, and the distribution method of adjusting the share of power generation may affect its low-carbon effect. In order to investigate the method of benefit distribution that does not hinder renewable energy consumption, a two-stage dispatching model for hybrid wind-photovoltaic-thermal power system is established, and the ancillary service market is introduced to coordinate optimization. The first stage model aims at the equilibrium of power generation profits of power producers. Then in the second stage, the equilibrium profits are transformed into constraint, and the day-ahead dispatching model is constructed with the objective of minimizing comprehensive power purchase costs and maximizing renewable energy utilization after considering the balance of economy and social responsibility. The case study results are proved that the ancillary service market combined with profits guarantee constraint can optimize the benefit distribution of power producers without affecting the consumption of renewable energy as much as possible. The proposed strategy is more suitable for the areas where the power supply structure is still dominated by thermal power. Changes in dispatching results under different ancillary service prices are discussed, and management recommendations are put forward in the end.

Suggested Citation

  • Ding, Yihong & Tan, Qinliang & Shan, Zijing & Han, Jian & Zhang, Yimei, 2023. "A two-stage dispatching optimization strategy for hybrid renewable energy system with low-carbon and sustainability in ancillary service market," Renewable Energy, Elsevier, vol. 207(C), pages 647-659.
  • Handle: RePEc:eee:renene:v:207:y:2023:i:c:p:647-659
    DOI: 10.1016/j.renene.2023.03.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123003427
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.03.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, Menglian & Wang, Xinhao & Meinrenken, Christoph J. & Ding, Yi, 2018. "Economic and environmental benefits of coordinating dispatch among distributed electricity storage," Applied Energy, Elsevier, vol. 210(C), pages 842-855.
    2. Wang, Yongli & Gao, Mingchen & Wang, Jingyan & Wang, Shuo & Liu, Yang & Zhu, Jinrong & Tan, Zhongfu, 2021. "Measurement and key influencing factors of the economic benefits for China’s photovoltaic power generation: A LCOE-based hybrid model," Renewable Energy, Elsevier, vol. 169(C), pages 935-952.
    3. Ren, Xiaojun & Wu, Yongtang & Hao, Dongmin & Liu, Guoxu & Zafetti, Nicholas, 2021. "Analysis of the performance of the multi-objective hybrid hydropower-photovoltaic-wind system to reduce variance and maximum power generation by developed owl search algorithm," Energy, Elsevier, vol. 231(C).
    4. Aquila, Giancarlo & Nakamura, Wilson Toshiro & Junior, Paulo Rotella & Souza Rocha, Luiz Celio & de Oliveira Pamplona, Edson, 2021. "Perspectives under uncertainties and risk in wind farms investments based on Omega-LCOE approach: An analysis in São Paulo state, Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Zhang, Xian & Chan, K.W. & Wang, Huaizhi & Hu, Jiefeng & Zhou, Bin & Zhang, Yan & Qiu, Jing, 2019. "Game-theoretic planning for integrated energy system with independent participants considering ancillary services of power-to-gas stations," Energy, Elsevier, vol. 176(C), pages 249-264.
    6. Wang, Haiyang & Zhang, Chenghui & Li, Ke & Ma, Xin, 2021. "Game theory-based multi-agent capacity optimization for integrated energy systems with compressed air energy storage," Energy, Elsevier, vol. 221(C).
    7. Yin, Yue & Liu, Tianqi & He, Chuan, 2019. "Day-ahead stochastic coordinated scheduling for thermal-hydro-wind-photovoltaic systems," Energy, Elsevier, vol. 187(C).
    8. Hu, Junfeng & Yan, Qingyou & Kahrl, Fredrich & Liu, Xu & Wang, Peng & Lin, Jiang, 2021. "Evaluating the ancillary services market for large-scale renewable energy integration in China's northeastern power grid," Utilities Policy, Elsevier, vol. 69(C).
    9. Azizipanah-Abarghooee, Rasoul & Niknam, Taher & Bina, Mohammad Amin & Zare, Mohsen, 2015. "Coordination of combined heat and power-thermal-wind-photovoltaic units in economic load dispatch using chance-constrained and jointly distributed random variables methods," Energy, Elsevier, vol. 79(C), pages 50-67.
    10. Tan, Qinliang & Ding, Yihong & Ye, Qi & Mei, Shufan & Zhang, Yimei & Wei, Yongmei, 2019. "Optimization and evaluation of a dispatch model for an integrated wind-photovoltaic-thermal power system based on dynamic carbon emissions trading," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Veselov, Fedor & Pankrushina, Tatiana & Khorshev, Andrey, 2021. "Comparative economic analysis of technological priorities for low-carbon transformation of electric power industry in Russia and the EU," Energy Policy, Elsevier, vol. 156(C).
    12. Nottrott, A. & Kleissl, J. & Washom, B., 2013. "Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems," Renewable Energy, Elsevier, vol. 55(C), pages 230-240.
    13. Gao, Jianwei & Wang, Yaping & Huang, Ningbo & Wei, Lingli & Zhang, Zixuan, 2022. "Optimal site selection study of wind-photovoltaic-shared energy storage power stations based on GIS and multi-criteria decision making: A two-stage framework," Renewable Energy, Elsevier, vol. 201(P1), pages 1139-1162.
    14. Banshwar, Anuj & Sharma, Naveen Kumar & Sood, Yog Raj & Shrivastava, Rajnish, 2018. "An international experience of technical and economic aspects of ancillary services in deregulated power industry: Lessons for emerging BRIC electricity markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 774-801.
    15. Al-Swaiti, Mustafa S. & Al-Awami, Ali T. & Khalid, Mohammad Waqas, 2017. "Co-optimized trading of wind-thermal-pumped storage system in energy and regulation markets," Energy, Elsevier, vol. 138(C), pages 991-1005.
    16. Meng, Fanyi & Bai, Yang & Jin, Jingliang, 2021. "An advanced real-time dispatching strategy for a distributed energy system based on the reinforcement learning algorithm," Renewable Energy, Elsevier, vol. 178(C), pages 13-24.
    17. Li, Jidong & Chen, Shijun & Wu, Yuqiang & Wang, Qinhui & Liu, Xing & Qi, Lijian & Lu, Xiuyuan & Gao, Lu, 2021. "How to make better use of intermittent and variable energy? A review of wind and photovoltaic power consumption in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    18. Wang, Fengjuan & Xie, Yachen & Xu, Jiuping, 2019. "Reliable-economical equilibrium based short-term scheduling towards hybrid hydro-photovoltaic generation systems: Case study from China," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    19. Xu, Jiuping & Wang, Fengjuan & Lv, Chengwei & Huang, Qian & Xie, Heping, 2018. "Economic-environmental equilibrium based optimal scheduling strategy towards wind-solar-thermal power generation system under limited resources," Applied Energy, Elsevier, vol. 231(C), pages 355-371.
    20. Wang, Xuebin & Chang, Jianxia & Meng, Xuejiao & Wang, Yimin, 2018. "Short-term hydro-thermal-wind-photovoltaic complementary operation of interconnected power systems," Applied Energy, Elsevier, vol. 229(C), pages 945-962.
    21. Wei, Yongmei & Ye, Qi & Ding, Yihong & Ai, Bingjun & Tan, Qinliang & Song, Wenda, 2021. "Optimization model of a thermal-solar-wind power planning considering economic and social benefits," Energy, Elsevier, vol. 222(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Qinliang & Ding, Yihong & Zheng, Jin & Dai, Mei & Zhang, Yimei, 2021. "The effects of carbon emissions trading and renewable portfolio standards on the integrated wind–photovoltaic–thermal power-dispatching system: Real case studies in China," Energy, Elsevier, vol. 222(C).
    2. Xu, Jiuping & Liu, Liying & Wang, Fengjuan, 2022. "Equilibrium strategy-based economic-reliable approach for day-ahead scheduling towards solar-wind-gas hybrid power generation system: A case study from China," Energy, Elsevier, vol. 240(C).
    3. Ma, Chao & Liu, Lu, 2022. "Optimal capacity configuration of hydro-wind-PV hybrid system and its coordinative operation rules considering the UHV transmission and reservoir operation requirements," Renewable Energy, Elsevier, vol. 198(C), pages 637-653.
    4. Tian, Yuyu & Chang, Jianxia & Wang, Yimin & Wang, Xuebin & Zhao, Mingzhe & Meng, Xuejiao & Guo, Aijun, 2022. "A method of short-term risk and economic dispatch of the hydro-thermal-wind-PV hybrid system considering spinning reserve requirements," Applied Energy, Elsevier, vol. 328(C).
    5. Xu, Jiuping & Zhao, Chuandang & Wang, Fengjuan & Yang, Guocan, 2022. "Industrial decarbonisation oriented distributed renewable generation towards wastewater treatment sector: Case from the Yangtze River Delta region in China," Energy, Elsevier, vol. 256(C).
    6. Tan, Qinliang & Ding, Yihong & Ye, Qi & Mei, Shufan & Zhang, Yimei & Wei, Yongmei, 2019. "Optimization and evaluation of a dispatch model for an integrated wind-photovoltaic-thermal power system based on dynamic carbon emissions trading," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Yan, Zhiyu, 2022. "A Wasserstein metric-based distributionally robust optimization approach for reliable-economic equilibrium operation of hydro-wind-solar energy systems," Renewable Energy, Elsevier, vol. 196(C), pages 204-219.
    8. Zhou, Yanlai & Chang, Fi-John & Chang, Li-Chiu & Lee, Wei-De & Huang, Angela & Xu, Chong-Yu & Guo, Shenglian, 2020. "An advanced complementary scheme of floating photovoltaic and hydropower generation flourishing water-food-energy nexus synergies," Applied Energy, Elsevier, vol. 275(C).
    9. Li, Hangxin & Wang, Shengwei, 2022. "Two-time-scale coordinated optimal control of building energy systems for demand response considering forecast uncertainties," Energy, Elsevier, vol. 253(C).
    10. Song, Xiaoling & Wang, Yudong & Zhang, Zhe & Shen, Charles & Peña-Mora, Feniosky, 2021. "Economic-environmental equilibrium-based bi-level dispatch strategy towards integrated electricity and natural gas systems," Applied Energy, Elsevier, vol. 281(C).
    11. Song, Xiaoling & Zhang, Huqing & Fan, Lurong & Zhang, Zhe & Peña-Mora, Feniosky, 2023. "Planning shared energy storage systems for the spatio-temporal coordination of multi-site renewable energy sources on the power generation side," Energy, Elsevier, vol. 282(C).
    12. Huang, Kangdi & Liu, Pan & Ming, Bo & Kim, Jong-Suk & Gong, Yu, 2021. "Economic operation of a wind-solar-hydro complementary system considering risks of output shortage, power curtailment and spilled water," Applied Energy, Elsevier, vol. 290(C).
    13. Jin, Jingliang & Wen, Qinglan & Cheng, Siqi & Qiu, Yaru & Zhang, Xianyue & Guo, Xiaojun, 2022. "Optimization of carbon emission reduction paths in the low-carbon power dispatching process," Renewable Energy, Elsevier, vol. 188(C), pages 425-436.
    14. Zhang, Juntao & Cheng, Chuntian & Yu, Shen & Su, Huaying, 2022. "Chance-constrained co-optimization for day-ahead generation and reserve scheduling of cascade hydropower–variable renewable energy hybrid systems," Applied Energy, Elsevier, vol. 324(C).
    15. Guo, Yi & Ming, Bo & Huang, Qiang & Wang, Yimin & Zheng, Xudong & Zhang, Wei, 2022. "Risk-averse day-ahead generation scheduling of hydro–wind–photovoltaic complementary systems considering the steady requirement of power delivery," Applied Energy, Elsevier, vol. 309(C).
    16. Chaoyang Chen & Hualing Liu & Yong Xiao & Fagen Zhu & Li Ding & Fuwen Yang, 2022. "Power Generation Scheduling for a Hydro-Wind-Solar Hybrid System: A Systematic Survey and Prospect," Energies, MDPI, vol. 15(22), pages 1-31, November.
    17. Mostafa Esmaeili Shayan & Gholamhassan Najafi & Barat Ghobadian & Shiva Gorjian & Mohamed Mazlan & Mehdi Samami & Alireza Shabanzadeh, 2022. "Flexible Photovoltaic System on Non-Conventional Surfaces: A Techno-Economic Analysis," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    18. Tiejiang Yuan & Tingting Ma & Yiqian Sun & Ning Chen & Bingtuan Gao, 2017. "Game-Based Generation Scheduling Optimization for Power Plants Considering Long-Distance Consumption of Wind-Solar-Thermal Hybrid Systems," Energies, MDPI, vol. 10(9), pages 1-15, August.
    19. Hartmann, Bálint & Divényi, Dániel & Vokony, István, 2018. "Evaluation of business possibilities of energy storage at commercial and industrial consumers – A case study," Applied Energy, Elsevier, vol. 222(C), pages 59-66.
    20. Li, Bo & Li, Xu & Su, Qingyu, 2022. "A system and game strategy for the isolated island electric-gas deeply coupled energy network," Applied Energy, Elsevier, vol. 306(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:207:y:2023:i:c:p:647-659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.