IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v207y2023icp385-397.html
   My bibliography  Save this article

A novel strategy for efficient biodiesel production: Optimization, prediction, and mechanism

Author

Listed:
  • Wang, Xiao-Man
  • Zeng, Ya-Nan
  • Wang, Yu-Ran
  • Wang, Fu-Ping
  • Wang, Yi-Tong
  • Li, Jun-Guo
  • Ji, Rui
  • Kang, Le-Le
  • Yu, Qing
  • Liu, Tian-Ji
  • Fang, Zhen

Abstract

Resistance of biodiesel industrial production came from high energy consumption and feedstock costs. To solve it, Na2CO3@BFD catalyst was prepared from blast furnace dust and used to catalyze biodiesel production at low temperature. Biodiesel yield of 99.04 wt% was obtained under conditions optimized by response surface methodology of methanol/oil molar ratio 13.72/1, catalyst dosage 9.77 wt % and 74.86 °C for 1.62 h. The order of influence of the four factors was temperature (245.9) > time (109.8) > methanol/oil molar ratio (23.83) > catalyst dosage (1.19). Back propagation neural network model (BPNN) was optimized using genetic algorithm (GA) and sparrow search algorithm (SSA) to predict biodiesel yield. The evaluation indexes of mean absolute error, mean square error, root mean square error and mean absolute percentage error of SSA-BPNN were 0.9236, 2.0184, 1.4207 and 1.0247 (vs. 2.4329, 9.1037, 3.0172 and 3.5000 for GA-BPNN and 4.3291, 43.4693, 6.5931 and 6.9227 for BPNN), indicating that SSA-BPNN model had excellent prediction ability to effectively reduce experimental costs and resource consumption. The reaction kinetics of Na2CO3@BFD for transesterification process showed that its activation energy was 65.73 kJ/mol, lower than that of reported solid base catalyst, indicating that it had significant potential in biomass conversion.

Suggested Citation

  • Wang, Xiao-Man & Zeng, Ya-Nan & Wang, Yu-Ran & Wang, Fu-Ping & Wang, Yi-Tong & Li, Jun-Guo & Ji, Rui & Kang, Le-Le & Yu, Qing & Liu, Tian-Ji & Fang, Zhen, 2023. "A novel strategy for efficient biodiesel production: Optimization, prediction, and mechanism," Renewable Energy, Elsevier, vol. 207(C), pages 385-397.
  • Handle: RePEc:eee:renene:v:207:y:2023:i:c:p:385-397
    DOI: 10.1016/j.renene.2023.03.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123003117
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.03.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Endalew, Abebe K. & Kiros, Yohannes & Zanzi, Rolando, 2011. "Heterogeneous catalysis for biodiesel production from Jatropha curcas oil (JCO)," Energy, Elsevier, vol. 36(5), pages 2693-2700.
    2. Ning, Yilin & Niu, Shengli & Wang, Yongzheng & Zhao, Jianli & Lu, Chunmei, 2021. "Sono-modified halloysite nanotube with NaAlO2 as novel heterogeneous catalyst for biodiesel production: Optimization via GA_BP neural network," Renewable Energy, Elsevier, vol. 175(C), pages 391-404.
    3. Wang, Yi-Tong & Cong, Wen-Jie & Zeng, Ya-Nan & Zhang, Yu-Qing & Liang, Jing-Long & Li, Jun-Guo & Jiang, Li-Qun & Fang, Zhen, 2021. "Direct production of biodiesel via simultaneous esterification and transesterification of renewable oils using calcined blast furnace dust," Renewable Energy, Elsevier, vol. 175(C), pages 1001-1011.
    4. Nayak, Milap G. & Vyas, Amish P., 2019. "Optimization of microwave-assisted biodiesel production from Papaya oil using response surface methodology," Renewable Energy, Elsevier, vol. 138(C), pages 18-28.
    5. Feyzi, Mostafa & Norouzi, Leila, 2016. "Preparation and kinetic study of magnetic Ca/Fe3O4@SiO2 nanocatalysts for biodiesel production," Renewable Energy, Elsevier, vol. 94(C), pages 579-586.
    6. Guldhe, Abhishek & Singh, Bhaskar & Mutanda, Taurai & Permaul, Kugen & Bux, Faizal, 2015. "Advances in synthesis of biodiesel via enzyme catalysis: Novel and sustainable approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1447-1464.
    7. Muhammad, Gul & Potchamyou Ngatcha, Ange Douglas & Lv, Yongkun & Xiong, Wenlong & El-Badry, Yaser A. & Asmatulu, Eylem & Xu, Jingliang & Alam, Md Asraful, 2022. "Enhanced biodiesel production from wet microalgae biomass optimized via response surface methodology and artificial neural network," Renewable Energy, Elsevier, vol. 184(C), pages 753-764.
    8. Mardhiah, H. Haziratul & Ong, Hwai Chyuan & Masjuki, H.H. & Lim, Steven & Lee, H.V., 2017. "A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1225-1236.
    9. Badday, Ali Sabri & Abdullah, Ahmad Zuhairi & Lee, Keat-Teong, 2013. "Optimization of biodiesel production process from Jatropha oil using supported heteropolyacid catalyst and assisted by ultrasonic energy," Renewable Energy, Elsevier, vol. 50(C), pages 427-432.
    10. Silitonga, A.S. & Atabani, A.E. & Mahlia, T.M.I., 2012. "Review on fuel economy standard and label for vehicle in selected ASEAN countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1683-1695.
    11. Simsek, Suleyman & Uslu, Samet & Simsek, Hatice, 2022. "Proportional impact prediction model of animal waste fat-derived biodiesel by ANN and RSM technique for diesel engine," Energy, Elsevier, vol. 239(PD).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Heng & Li, Hu & Hu, Yulin & Venkateswara Rao, Kasanneni Tirumala & Xu, Chunbao (Charles) & Yang, Song, 2019. "Advances in production of bio-based ester fuels with heterogeneous bifunctional catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    2. Pascoal, C.V.P. & Oliveira, A.L.L. & Figueiredo, D.D. & Assunção, J.C.C., 2020. "Optimization and kinetic study of ultrasonic-mediated in situ transesterification for biodiesel production from the almonds of Syagrus cearensis," Renewable Energy, Elsevier, vol. 147(P1), pages 1815-1824.
    3. Foroutan, Rauf & Mohammadi, Reza & Razeghi, Jafar & Ramavandi, Bahman, 2021. "Biodiesel production from edible oils using algal biochar/CaO/K2CO3 as a heterogeneous and recyclable catalyst," Renewable Energy, Elsevier, vol. 168(C), pages 1207-1216.
    4. Li, Ying & Niu, Shengli & Hao, Yanan & Zhou, Wenbo & Wang, Jun & Liu, Jiangwei, 2022. "Role of oxygen vacancy on activity of Fe-doped SrTiO3 perovskite bifunctional catalysts for biodiesel production," Renewable Energy, Elsevier, vol. 199(C), pages 1258-1271.
    5. Singh, Bhaskar & Guldhe, Abhishek & Rawat, Ismail & Bux, Faizal, 2014. "Towards a sustainable approach for development of biodiesel from plant and microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 216-245.
    6. Harsha Hebbar, H.R. & Math, M.C. & Yatish, K.V., 2018. "Optimization and kinetic study of CaO nano-particles catalyzed biodiesel production from Bombax ceiba oil," Energy, Elsevier, vol. 143(C), pages 25-34.
    7. Badday, Ali Sabri & Abdullah, Ahmad Zuhairi & Lee, Keat-Teong, 2013. "Ultrasound-assisted transesterification of crude Jatropha oil using cesium doped heteropolyacid catalyst: Interactions between process variables," Energy, Elsevier, vol. 60(C), pages 283-291.
    8. Laskar, Ikbal Bahar & Changmai, Bishwajit & Gupta, Rajat & Shi, Da & Jenkinson, Kellie J. & Wheatley, Andrew E.H. & Rokhum, Lalthazuala, 2021. "A mesoporous polysulfonic acid-formaldehyde polymeric catalyst for biodiesel production from Jatropha curcas oil," Renewable Energy, Elsevier, vol. 173(C), pages 415-421.
    9. Mamtani, Kapil & Shahbaz, Kaveh & Farid, Mohammed M., 2021. "Glycerolysis of free fatty acids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    10. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    11. Babu, D. & Karvembu, R. & Anand, R., 2018. "Impact of split injection strategy on combustion, performance and emissions characteristics of biodiesel fuelled common rail direct injection assisted diesel engine," Energy, Elsevier, vol. 165(PB), pages 577-592.
    12. Nahas, Lea & Dahdah, Eliane & Aouad, Samer & El Khoury, Bilal & Gennequin, Cedric & Abi Aad, Edmond & Estephane, Jane, 2023. "Highly efficient scallop seashell-derived catalyst for biodiesel production from sunflower and waste cooking oils: Reaction kinetics and effect of calcination temperature studies," Renewable Energy, Elsevier, vol. 202(C), pages 1086-1095.
    13. Gualberto Zavarize, Danilo & Braun, Heder & Diniz de Oliveira, Jorge, 2021. "Methanolysis of low-FFA waste cooking oil with novel carbon-based heterogeneous acid catalyst derived from Amazon açaí berry seeds," Renewable Energy, Elsevier, vol. 171(C), pages 621-634.
    14. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    15. Aboelazayem, Omar & Gadalla, Mamdouh & Saha, Basudeb, 2019. "Derivatisation-free characterisation and supercritical conversion of free fatty acids into biodiesel from high acid value waste cooking oil," Renewable Energy, Elsevier, vol. 143(C), pages 77-90.
    16. Sun, Jianlong & Bai, Bin & Yu, Xinyue & Wang, Yujie & Zhou, Weihong & Jin, Hui, 2024. "Thermodynamic analysis of a solar-assisted supercritical water gasification system for poly-generation of hydrogen-heat-power production from waste plastics," Energy, Elsevier, vol. 307(C).
    17. Banerjee, Madhuchanda & Dey, Binita & Talukdar, Jayanta & Chandra Kalita, Mohan, 2014. "Production of biodiesel from sunflower oil using highly catalytic bimetallic gold–silver core–shell nanoparticle," Energy, Elsevier, vol. 69(C), pages 695-699.
    18. Lani, Nurul Saadiah & Ngadi, Norzita & Haron, Saharudin & Mohammed Inuwa, Ibrahim & Anako Opotu, Lawal, 2024. "The catalytic effect of calcium oxide and magnetite loading on magnetically supported calcium oxide-zeolite catalyst for biodiesel production from used cooking oil," Renewable Energy, Elsevier, vol. 222(C).
    19. Li, Ying & Niu, Shengli & Wang, Jun & Zhou, Wenbo & Wang, Yongzheng & Han, Kuihua & Lu, Chunmei, 2022. "Mesoporous SrTiO3 perovskite as a heterogeneous catalyst for biodiesel production: Experimental and DFT studies," Renewable Energy, Elsevier, vol. 184(C), pages 164-175.
    20. Keon Hee Kim & Eun Yeol Lee, 2017. "Environmentally-Benign Dimethyl Carbonate-Mediated Production of Chemicals and Biofuels from Renewable Bio-Oil," Energies, MDPI, vol. 10(11), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:207:y:2023:i:c:p:385-397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.