IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v205y2023icp432-446.html
   My bibliography  Save this article

Actuator fault tolerant offshore wind turbine load mitigation control

Author

Listed:
  • Liu, Yanhua
  • Patton, Ron J.
  • Shi, Shuo

Abstract

Offshore wind turbine (OWT) rotors have large diameters with flexible blade structures which are subject to asymmetrical loads caused by blade flapping and turbulent or unsteady wind flow. Rotor imbalance inevitably leads to enhanced fatigue of blade rotor hub and tower structures. Hence, to enhance the life of the OWT and maintain good power conversion the unbalanced loading requires a reliable mitigation strategy, typically using a combination of Individual Pitch Control (IPC) and Collective Pitch Control (CPC). Increased pitch motion resulting from IPC activity can increase the possibility of pitch actuator faults and the resulting load imbalance results in loss of power and enhanced fatigue. This has accelerated the emergence of new research areas combining IPC with the fault tolerant control (FTC)-based fault compensation, a so-called FTC and IPC “co-design” system. A related research challenge is the clear need to enhance the robustness of the FTC IPC “co-design” to some dynamic uncertainty and unwanted disturbance. In this work a Bayesian optimization-based pitch controller using Proportional–Integral (PI) control is proposed to improve pitch control robustness. This is achieved using a systematic search for optimal controller coefficients by evaluating a Gaussian process model between the designed objective function and the coefficients. The pitch actuator faults are estimated and compensated using a robust unknown input observer (UIO)-based FTC scheme. The robustness and effectiveness of this “co-design” scheme are verified using Monte Carlo simulations applied to the 5MW NREL FAST WT benchmark system. The results show clearly (a) the effectiveness of the load mitigation control for a wide range of wind loading conditions, (b) the effect of actuator faults on the load mitigation performance and (c) the recovery to normal load mitigation, subject to FTC action.

Suggested Citation

  • Liu, Yanhua & Patton, Ron J. & Shi, Shuo, 2023. "Actuator fault tolerant offshore wind turbine load mitigation control," Renewable Energy, Elsevier, vol. 205(C), pages 432-446.
  • Handle: RePEc:eee:renene:v:205:y:2023:i:c:p:432-446
    DOI: 10.1016/j.renene.2023.01.092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123001015
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.01.092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ossmann, Daniel & Seiler, Peter & Milliren, Christopher & Danker, Alan, 2021. "Field testing of multi-variable individual pitch control on a utility-scale wind turbine," Renewable Energy, Elsevier, vol. 170(C), pages 1245-1256.
    2. Gao, Richie & Gao, Zhiwei, 2016. "Pitch control for wind turbine systems using optimization, estimation and compensation," Renewable Energy, Elsevier, vol. 91(C), pages 501-515.
    3. deCastro, M. & Salvador, S. & Gómez-Gesteira, M. & Costoya, X. & Carvalho, D. & Sanz-Larruga, F.J. & Gimeno, L., 2019. "Europe, China and the United States: Three different approaches to the development of offshore wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 55-70.
    4. Li, Jianshen & Wang, Shuangxin, 2021. "Dual multivariable model-free adaptive individual pitch control for load reduction in wind turbines with actuator faults," Renewable Energy, Elsevier, vol. 174(C), pages 293-304.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Wanying & He, Yaoyao & Yang, Shanlin, 2023. "A multi-step probability density prediction model based on gaussian approximation of quantiles for offshore wind power," Renewable Energy, Elsevier, vol. 202(C), pages 992-1011.
    2. Ayman Al-Quraan & Bashar Al-Mhairat, 2022. "Intelligent Optimized Wind Turbine Cost Analysis for Different Wind Sites in Jordan," Sustainability, MDPI, vol. 14(5), pages 1-24, March.
    3. Zhao, Qin & Zhang, Houcheng & Hu, Ziyang & Hou, Shujin, 2021. "Performance evaluation of a new hybrid system consisting of a photovoltaic module and an absorption heat transformer for electricity production and heat upgrading," Energy, Elsevier, vol. 216(C).
    4. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    5. Jansen, Malte & Beiter, Philipp & Riepin, Iegor & Müsgens, Felix & Guajardo-Fajardo, Victor Juarez & Staffell, Iain & Bulder, Bernard & Kitzing, Lena, 2022. "Policy choices and outcomes for offshore wind auctions globally," Energy Policy, Elsevier, vol. 167(C).
    6. Dario Maradin & Bojana Olgić Draženović & Saša Čegar, 2023. "The Efficiency of Offshore Wind Energy Companies in the European Countries: A DEA Approach," Energies, MDPI, vol. 16(9), pages 1-16, April.
    7. Zhang, Shuangyi & Li, Xichen, 2021. "Future projections of offshore wind energy resources in China using CMIP6 simulations and a deep learning-based downscaling method," Energy, Elsevier, vol. 217(C).
    8. Azizi, Askar & Nourisola, Hamid & Shoja-Majidabad, Sajjad, 2019. "Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller," Renewable Energy, Elsevier, vol. 135(C), pages 55-65.
    9. Mingqiu Liu & Zhichang Liang & Haixiao Liu, 2022. "Numerical Investigations of Wake Expansion in the Offshore Wind Farm Using a Large Eddy Simulation," Energies, MDPI, vol. 15(6), pages 1-19, March.
    10. Amira Elkodama & Amr Ismaiel & A. Abdellatif & S. Shaaban & Shigeo Yoshida & Mostafa A. Rushdi, 2023. "Control Methods for Horizontal Axis Wind Turbines (HAWT): State-of-the-Art Review," Energies, MDPI, vol. 16(17), pages 1-32, September.
    11. Wakui, Tetsuya & Nagamura, Atsushi & Yokoyama, Ryohei, 2021. "Stabilization of power output and platform motion of a floating offshore wind turbine-generator system using model predictive control based on previewed disturbances," Renewable Energy, Elsevier, vol. 173(C), pages 105-127.
    12. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
    13. Abramic, A. & García Mendoza, A. & Haroun, R., 2021. "Introducing offshore wind energy in the sea space: Canary Islands case study developed under Maritime Spatial Planning principles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    14. Santiago Salvador & Marta Chantal Ribeiro, 2023. "Socio‐economic, legal, and political context of offshore renewable energies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
    15. Jing Zhang & Jixing Chen & Hao Liu & Yining Chen & Jingwen Yang & Zongtao Yuan & Qingan Li, 2023. "Applicability of WorldCover in Wind Power Engineering: Application Research of Coupled Wake Model Based on Practical Project," Energies, MDPI, vol. 16(5), pages 1-16, February.
    16. Atsushi Yamaguchi & Iman Yousefi & Takeshi Ishihara, 2020. "Reduction in the Fluctuating Load on Wind Turbines by Using a Combined Nacelle Acceleration Feedback and Lidar-Based Feedforward Control," Energies, MDPI, vol. 13(17), pages 1-18, September.
    17. Ren, Siyue & Feng, Xiao & Yang, Minbo, 2023. "Solution of issues in emergy theory caused by pathway tracking: Taking China's power generation system as an example," Energy, Elsevier, vol. 262(PB).
    18. Md Rasel Sarkar & Sabariah Julai & Chong Wen Tong & Moslem Uddin & M.F. Romlie & GM Shafiullah, 2020. "Hybrid Pitch Angle Controller Approaches for Stable Wind Turbine Power under Variable Wind Speed," Energies, MDPI, vol. 13(14), pages 1-19, July.
    19. Amirsoheil Honarbari & Sajad Najafi-Shad & Mohsen Saffari Pour & Seyed Soheil Mousavi Ajarostaghi & Ali Hassannia, 2021. "MPPT Improvement for PMSG-Based Wind Turbines Using Extended Kalman Filter and Fuzzy Control System," Energies, MDPI, vol. 14(22), pages 1-16, November.
    20. Bo Hu & Jiaxi Li & Shuang Li & Jie Yang, 2019. "A Hybrid End-to-End Control Strategy Combining Dueling Deep Q-network and PID for Transient Boost Control of a Diesel Engine with Variable Geometry Turbocharger and Cooled EGR," Energies, MDPI, vol. 12(19), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:205:y:2023:i:c:p:432-446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.