IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v203y2023icp56-67.html
   My bibliography  Save this article

Synthesis and characterization of KF/waste glass catalyst for use in the transesterification process under pressurized conditions

Author

Listed:
  • Porcel, Meline Gurtat
  • de Mello, Bruna Tais Ferreira
  • Alves, Helton José
  • Schneider, Ricardo
  • da Silva, Camila
  • Borba, Carlos Eduardo

Abstract

The use of heterogeneous catalysts can make the transesterification process under pressurized conditions even more viable due to the possibility of minimizing the operation temperature. In this sense, the objective of this work was to determine an optimal synthesis condition of a catalyst based on KF and glass waste for use in transesterification under pressurized media in continuous reactor. A central composite rotational design was used with a mass ratio of potassium fluoride/waste glass particles (KF/WGP) and calcination temperature (CT) as factors and ethyl ester content and potassium leaching as the response variable. Transesterification reactions were performed at 275 °C, 20 MPa and mass ratio of soybean oil/ethanol of 1:1. The optimal synthesis condition of the catalyst was identified (KF/WGP = 50%, CT = 500 °C) wherein a content of 69% of ethyl esters and 8% potassium leaching were achieved. It was observed that the chemical treatment of waste glass with KF leads to the formation of compounds such KCaF3, K2O, and K2CO3 on its surface, which resulted in increased basicity and basic strength of the catalyst. These results indicated that the KF/WGP catalyst has the potential to produce esters in continuous flow under pressurized conditions.

Suggested Citation

  • Porcel, Meline Gurtat & de Mello, Bruna Tais Ferreira & Alves, Helton José & Schneider, Ricardo & da Silva, Camila & Borba, Carlos Eduardo, 2023. "Synthesis and characterization of KF/waste glass catalyst for use in the transesterification process under pressurized conditions," Renewable Energy, Elsevier, vol. 203(C), pages 56-67.
  • Handle: RePEc:eee:renene:v:203:y:2023:i:c:p:56-67
    DOI: 10.1016/j.renene.2022.12.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122018043
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.12.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vieitez, Ignacio & da Silva, Camila & Alckmin, Isabella & Borges, Gustavo R. & Corazza, Fernanda C. & Oliveira, J. Vladimir & Grompone, Maria A. & Jachmanián, Iván, 2010. "Continuous catalyst-free methanolysis and ethanolysis of soybean oil under supercritical alcohol/water mixtures," Renewable Energy, Elsevier, vol. 35(9), pages 1976-1981.
    2. Vadery, Vinu & Cherikkallinmel, Sudha Kochiyil & Ramakrishnan, Resmi M. & Sugunan, Sankaran & Narayanan, Binitha N., 2019. "Green production of biodiesel over waste borosilicate glass derived catalyst and the process up-gradation in pilot scale," Renewable Energy, Elsevier, vol. 141(C), pages 1042-1053.
    3. Khatibi, Maryam & Khorasheh, Farhad & Larimi, Afsanehsadat, 2021. "Biodiesel production via transesterification of canola oil in the presence of Na–K doped CaO derived from calcined eggshell," Renewable Energy, Elsevier, vol. 163(C), pages 1626-1636.
    4. Tran, Dang-Thuan & Chang, Jo-Shu & Lee, Duu-Jong, 2017. "Recent insights into continuous-flow biodiesel production via catalytic and non-catalytic transesterification processes," Applied Energy, Elsevier, vol. 185(P1), pages 376-409.
    5. Essamlali, Younes & Amadine, Othmane & Fihri, Aziz & Zahouily, Mohamed, 2019. "Sodium modified fluorapatite as a sustainable solid bi-functional catalyst for biodiesel production from rapeseed oil," Renewable Energy, Elsevier, vol. 133(C), pages 1295-1307.
    6. Ma, Yingqun & Wang, Qunhui & Gao, Zhen & Sun, Xiaohong & Wang, Nan & Niu, Ruxuan & Ma, Hongzhi, 2016. "Transesterification of waste cooking oil using FeCl3-modified resin catalyst and the research of catalytic mechanism," Renewable Energy, Elsevier, vol. 86(C), pages 643-650.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Okoye, Patrick U. & Wang, Song & Khanday, Waheed Ahmad & Li, Sanxi & Tang, Tao & Zhang, Linnan, 2020. "Box-Behnken optimization of glycerol transesterification reaction to glycerol carbonate over calcined oil palm fuel ash derived catalyst," Renewable Energy, Elsevier, vol. 146(C), pages 2676-2687.
    2. Zhang, Heng & Li, Hu & Hu, Yulin & Venkateswara Rao, Kasanneni Tirumala & Xu, Chunbao (Charles) & Yang, Song, 2019. "Advances in production of bio-based ester fuels with heterogeneous bifunctional catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    3. Mijangos, Gabriela E. & Cuautli, Cristina & Romero-Ibarra, Issis C. & Vazquez-Arenas, Jorge & Santolalla-Vargas, Carlos E. & Santes, Víctor & Castañeda-Galván, Adrián A. & Pfeiffer, Heriberto, 2022. "Experimental and theoretical analysis revealing the underlying chemistry accounting for the heterogeneous transesterification reaction in Na2SiO3 and Li2SiO3 catalysts," Renewable Energy, Elsevier, vol. 184(C), pages 845-856.
    4. Muppaneni, Tapaswy & Reddy, Harvind K. & Patil, Prafulla D. & Dailey, Peter & Aday, Curtis & Deng, Shuguang, 2012. "Ethanolysis of camelina oil under supercritical condition with hexane as a co-solvent," Applied Energy, Elsevier, vol. 94(C), pages 84-88.
    5. Kamarulzaman, Mohd Kamal & Hafiz, M. & Abdullah, Adam & Chen, Ang Fuk & Awad, Omar I., 2019. "Combustion, performances and emissions characteristics of black soldier fly larvae oil and diesel blends in compression ignition engine," Renewable Energy, Elsevier, vol. 142(C), pages 569-580.
    6. di Bitonto, Luigi & Pastore, Carlo, 2019. "Metal hydrated-salts as efficient and reusable catalysts for pre-treating waste cooking oils and animal fats for an effective production of biodiesel," Renewable Energy, Elsevier, vol. 143(C), pages 1193-1200.
    7. Ella Cebisa Linganiso & Boitumelo Tlhaole & Lindokuhle Precious Magagula & Silas Dziike & Linda Zikhona Linganiso & Tshwafo Elias Motaung & Nosipho Moloto & Zikhona Nobuntu Tetana, 2022. "Biodiesel Production from Waste Oils: A South African Outlook," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    8. Khozeymeh Nezhad, Marziyeh & Aghaei, Hamidreza, 2021. "Tosylated cloisite as a new heterofunctional carrier for covalent immobilization of lipase and its utilization for production of biodiesel from waste frying oil," Renewable Energy, Elsevier, vol. 164(C), pages 876-888.
    9. Zimmerman, William B. & Kokoo, Rungrote, 2018. "Esterification for biodiesel production with a phantom catalyst: Bubble mediated reactive distillation," Applied Energy, Elsevier, vol. 221(C), pages 28-40.
    10. Melad Atrash & Karen Molina & El-Or Sharoni & Gilbert Azwat & Marina Nisnevitch & Yael Albo & Faina Nakonechny, 2023. "Toward Efficient Continuous Production of Biodiesel from Brown Grease," Sustainability, MDPI, vol. 15(11), pages 1-17, May.
    11. R, Gopi & Thangarasu, Vinoth & Vinayakaselvi M, Angkayarkan & Ramanathan, Anand, 2022. "A critical review of recent advancements in continuous flow reactors and prominent integrated microreactors for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    12. Hashemzadeh Gargari, M. & Sadrameli, S.M., 2018. "Investigating continuous biodiesel production from linseed oil in the presence of a Co-solvent and a heterogeneous based catalyst in a packed bed reactor," Energy, Elsevier, vol. 148(C), pages 888-895.
    13. Ishtiaq Ahmed & Muhammad Anjum Zia & Huma Afzal & Shaheez Ahmed & Muhammad Ahmad & Zain Akram & Farooq Sher & Hafiz M. N. Iqbal, 2021. "Socio-Economic and Environmental Impacts of Biomass Valorisation: A Strategic Drive for Sustainable Bioeconomy," Sustainability, MDPI, vol. 13(8), pages 1-32, April.
    14. Metawea, Rodaina & Zewail, Taghreed & El-Ashtoukhy, El-Sayed & El Gheriany, Iman & Hamad, Hesham, 2018. "Process intensification of the transesterification of palm oil to biodiesel in a batch agitated vessel provided with mesh screen extended baffles," Energy, Elsevier, vol. 158(C), pages 111-120.
    15. Panchal, Balaji & Bian, Kai & Chang, Tao & Zhu, Zheng & Wang, Jinxi & Qin, Shenjun & Zhao, Cunliang & Sun, Yuzhuang, 2021. "Synthesis of Generation-2 polyamidoamine based ionic liquid: Efficient dendrimer based catalytic green fuel production from yellow grease," Energy, Elsevier, vol. 219(C).
    16. Cong, Wen-Jie & Wang, Yi-Tong & Li, Hu & Fang, Zhen & Sun, Jie & Liu, Hai-Tong & Liu, Jie-Teng & Tang, Song & Xu, Lujiang, 2020. "Direct production of biodiesel from waste oils with a strong solid base from alkalized industrial clay ash," Applied Energy, Elsevier, vol. 264(C).
    17. Irfan, Muhammad & Zhou, Lei & Ji, Jia-Heng & Chen, Jing & Yuan, Shan & Liang, Tian-Tian & Liu, Jin-Feng & Yang, Shi-Zhong & Gu, Ji-Dong & Mu, Bo-Zhong, 2020. "Enhanced energy generation and altered biochemical pathways in an enrichment microbial consortium amended with natural iron minerals," Renewable Energy, Elsevier, vol. 159(C), pages 585-594.
    18. Xia, Shaige & Li, Jian & Chen, Guanyi & Tao, Junyu & Li, Wanqing & Zhu, Guangbin, 2022. "Magnetic reusable acid-base bifunctional Co doped Fe2O3–CaO nanocatalysts for biodiesel production from soybean oil and waste frying oil," Renewable Energy, Elsevier, vol. 189(C), pages 421-434.
    19. Rajaeifar, Mohammad Ali & Abdi, Reza & Tabatabaei, Meisam, 2017. "Expanded polystyrene waste application for improving biodiesel environmental performance parameters from life cycle assessment point of view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 278-298.
    20. Sun, Yingqiang & Xu, Chunyan & Igou, Thomas & Liu, Peilu & Hu, Zixuan & Van Ginkel, Steven W. & Chen, Yongsheng, 2018. "Effect of water content on [Bmim][HSO4] assisted in-situ transesterification of wet Nannochloropsis oceanica," Applied Energy, Elsevier, vol. 226(C), pages 461-468.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:203:y:2023:i:c:p:56-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.