IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v188y2022icp651-669.html
   My bibliography  Save this article

Statistical analysis of power generation of semi-transparent photovoltaic (STPV) for diversity in building envelope design: A mock-up test by azimuth and tilt angles

Author

Listed:
  • Kwak, Younghoon
  • Mun, Sun-Hye
  • Park, Chang-Dae
  • Lee, Sang-Moon
  • Huh, Jung-Ho

Abstract

Semi-transparent photovoltaics (STPVs) have received increasing attention as an energy-efficient building envelope that uses renewable energy. It is necessary to find the optimal combination of the azimuth angle and tilt angle to install the STPV and to secure high-power generation. However, various constraints limit the installation of STPVs at optimal angles. In other words, there may be a conflict between the building envelope design and STPV design depending on the circumstances, thereby limiting the design. Therefore, this study presents a statistical analysis of power generation with respect to angle to determine the possibilities in building envelope design. Two identical STPV modules each were installed at five azimuth and tilt angles (i.e., two STPV modules each on 25 sides), and the power generation for one year was measured. Then, 1392 h of data were sampled and a statistical analysis was conducted to compare the power generation. First, the representative values were set after comparing the power generation of the two modules at each angle through the Mann–Whitney test. Then, the power generation of each angle was compared through the Kruskal–Wallis test, and a post hoc analysis was conducted. As a result, power generation for five azimuth angles (e.g., +90° (west), +45° (southwest), 0° (south), −45° (southeast), and −90° (east)) was statistically identical in performance at tilt angles of 3° and 15°. Therefore, it is more desirable to focus designs on securing more area than considering optimal azimuth angle in the generation of maximum power through STPVs, at tilt angles of 3° and 15°. Moreover, STPVs for the tilt angles of 75° and 90° were statistically identical in performance when facing west, southwest, southeast, and east. This suggests that, when an STPV is installed at 75° or 90° of the tilt angle, if it cannot be installed on the south, it will provide statistically identical performance even if it is installed at any other azimuth angle. In light of these findings, this study concludes by providing guidelines for the application of STPVs in early architectural design.

Suggested Citation

  • Kwak, Younghoon & Mun, Sun-Hye & Park, Chang-Dae & Lee, Sang-Moon & Huh, Jung-Ho, 2022. "Statistical analysis of power generation of semi-transparent photovoltaic (STPV) for diversity in building envelope design: A mock-up test by azimuth and tilt angles," Renewable Energy, Elsevier, vol. 188(C), pages 651-669.
  • Handle: RePEc:eee:renene:v:188:y:2022:i:c:p:651-669
    DOI: 10.1016/j.renene.2022.02.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122001896
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.02.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dey, Sumon & Lakshmanan, Madan Kumar & Pesala, Bala, 2018. "Optimal solar tree design for increased flexibility in seasonal energy extraction," Renewable Energy, Elsevier, vol. 125(C), pages 1038-1048.
    2. MacDougall, Hillary & Tomosk, Steve & Wright, David, 2018. "Geographic maps of the impact of government incentives on the economic viability of solar power," Renewable Energy, Elsevier, vol. 122(C), pages 497-506.
    3. Sorgato, M.J. & Schneider, K. & Rüther, R., 2018. "Technical and economic evaluation of thin-film CdTe building-integrated photovoltaics (BIPV) replacing façade and rooftop materials in office buildings in a warm and sunny climate," Renewable Energy, Elsevier, vol. 118(C), pages 84-98.
    4. Chae, Young Tae & Kim, Jeehwan & Park, Hongsik & Shin, Byungha, 2014. "Building energy performance evaluation of building integrated photovoltaic (BIPV) window with semi-transparent solar cells," Applied Energy, Elsevier, vol. 129(C), pages 217-227.
    5. Li, Yanting & Su, Yan & Shu, Lianjie, 2014. "An ARMAX model for forecasting the power output of a grid connected photovoltaic system," Renewable Energy, Elsevier, vol. 66(C), pages 78-89.
    6. Al Garni, Hassan Z. & Awasthi, Anjali & Wright, David, 2019. "Optimal orientation angles for maximizing energy yield for solar PV in Saudi Arabia," Renewable Energy, Elsevier, vol. 133(C), pages 538-550.
    7. Cheng, C.L. & Sanchez Jimenez, Charles S. & Lee, Meng-Chieh, 2009. "Research of BIPV optimal tilted angle, use of latitude concept for south orientated plans," Renewable Energy, Elsevier, vol. 34(6), pages 1644-1650.
    8. Ullah, Asad & Imran, Hassan & Maqsood, Zaki & Butt, Nauman Zafar, 2019. "Investigation of optimal tilt angles and effects of soiling on PV energy production in Pakistan," Renewable Energy, Elsevier, vol. 139(C), pages 830-843.
    9. Sadineni, Suresh B. & Atallah, Fady & Boehm, Robert F., 2012. "Impact of roof integrated PV orientation on the residential electricity peak demand," Applied Energy, Elsevier, vol. 92(C), pages 204-210.
    10. Cervone, Guido & Clemente-Harding, Laura & Alessandrini, Stefano & Delle Monache, Luca, 2017. "Short-term photovoltaic power forecasting using Artificial Neural Networks and an Analog Ensemble," Renewable Energy, Elsevier, vol. 108(C), pages 274-286.
    11. Lv, Yuexia & Si, Pengfei & Rong, Xiangyang & Yan, Jinyue & Feng, Ya & Zhu, Xiaohong, 2018. "Determination of optimum tilt angle and orientation for solar collectors based on effective solar heat collection," Applied Energy, Elsevier, vol. 219(C), pages 11-19.
    12. Rowlands, Ian H. & Kemery, Briana Paige & Beausoleil-Morrison, Ian, 2011. "Optimal solar-PV tilt angle and azimuth: An Ontario (Canada) case-study," Energy Policy, Elsevier, vol. 39(3), pages 1397-1409, March.
    13. Peng, Jinqing & Curcija, Dragan C. & Lu, Lin & Selkowitz, Stephen E. & Yang, Hongxing & Zhang, Weilong, 2016. "Numerical investigation of the energy saving potential of a semi-transparent photovoltaic double-skin facade in a cool-summer Mediterranean climate," Applied Energy, Elsevier, vol. 165(C), pages 345-356.
    14. Almonacid, F. & Rus, C. & Pérez, P.J. & Hontoria, L., 2009. "Estimation of the energy of a PV generator using artificial neural network," Renewable Energy, Elsevier, vol. 34(12), pages 2743-2750.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Zhenghong & Zhang, Ling & Su, Xiaosong & Wu, Jing & Liu, Zhongbing, 2022. "Experimental and numerical analysis of naturally ventilated PV-DSF in a humid subtropical climate," Renewable Energy, Elsevier, vol. 200(C), pages 633-646.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al Garni, Hassan Z. & Awasthi, Anjali & Wright, David, 2019. "Optimal orientation angles for maximizing energy yield for solar PV in Saudi Arabia," Renewable Energy, Elsevier, vol. 133(C), pages 538-550.
    2. Liu, Yujun & Yao, Ling & Jiang, Hou & Lu, Ning & Qin, Jun & Liu, Tang & Zhou, Chenghu, 2022. "Spatial estimation of the optimum PV tilt angles in China by incorporating ground with satellite data," Renewable Energy, Elsevier, vol. 189(C), pages 1249-1258.
    3. Essa Alhamer & Addison Grigsby & Rydge Mulford, 2022. "The Influence of Seasonal Cloud Cover, Ambient Temperature and Seasonal Variations in Daylight Hours on the Optimal PV Panel Tilt Angle in the United States," Energies, MDPI, vol. 15(20), pages 1-14, October.
    4. Barbón, A. & Ayuso, P. Fortuny & Bayón, L. & Silva, C.A., 2021. "A comparative study between racking systems for photovoltaic power systems," Renewable Energy, Elsevier, vol. 180(C), pages 424-437.
    5. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    6. Gigih Rahmandhani Setyantho & Hansaem Park & Seongju Chang, 2021. "Multi-Criteria Performance Assessment for Semi-Transparent Photovoltaic Windows in Different Climate Contexts," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    7. Chinchilla, Monica & Santos-Martín, David & Carpintero-Rentería, Miguel & Lemon, Scott, 2021. "Worldwide annual optimum tilt angle model for solar collectors and photovoltaic systems in the absence of site meteorological data," Applied Energy, Elsevier, vol. 281(C).
    8. Ye, Yuxuan & Zhu, Rui & Yan, Jinyue & Lu, Lin & Wong, Man Sing & Luo, Wei & Chen, Min & Zhang, Fan & You, Linlin & Wang, Yafei & Qin, Zheng, 2023. "Planning the installation of building-integrated photovoltaic shading devices: A GIS-based spatiotemporal analysis and optimization approach," Renewable Energy, Elsevier, vol. 216(C).
    9. Xu, Luting & Long, Enshen & Wei, Jincheng & Cheng, Zhu & Zheng, Hanjie, 2021. "A new approach to determine the optimum tilt angle and orientation of solar collectors in mountainous areas with high altitude," Energy, Elsevier, vol. 237(C).
    10. Mahmood Alharbi & Ramzi Alahmadi & Ahmed Alahmadi, 2023. "Meteorological-Data-Based Modeling for PV Performance Optimization," Sustainability, MDPI, vol. 15(11), pages 1-16, May.
    11. Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Mohamed Trabelsi & Shady S. Refaat & Fakhreddine S. Oueslati, 2021. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements," Energies, MDPI, vol. 14(13), pages 1-20, July.
    12. Gönül, Ömer & Yazar, Fatih & Duman, A. Can & Güler, Önder, 2022. "A comparative techno-economic assessment of manually adjustable tilt mechanisms and automatic solar trackers for behind-the-meter PV applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    13. Cannavale, Alessandro & Ierardi, Laura & Hörantner, Maximilian & Eperon, Giles E. & Snaith, Henry J. & Ayr, Ubaldo & Martellotta, Francesco, 2017. "Improving energy and visual performance in offices using building integrated perovskite-based solar cells: A case study in Southern Italy," Applied Energy, Elsevier, vol. 205(C), pages 834-846.
    14. Tiantian Zhang & Meng Wang & Hongxing Yang, 2018. "A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems," Energies, MDPI, vol. 11(11), pages 1-34, November.
    15. Skandalos, Nikolaos & Wang, Meng & Kapsalis, Vasileios & D'Agostino, Delia & Parker, Danny & Bhuvad, Sushant Suresh & Udayraj, & Peng, Jinqing & Karamanis, Dimitris, 2022. "Building PV integration according to regional climate conditions: BIPV regional adaptability extending Köppen-Geiger climate classification against urban and climate-related temperature increases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    16. Jeongyoon Oh & Taehoon Hong & Hakpyeong Kim & Jongbaek An & Kwangbok Jeong & Choongwan Koo, 2017. "Advanced Strategies for Net-Zero Energy Building: Focused on the Early Phase and Usage Phase of a Building’s Life Cycle," Sustainability, MDPI, vol. 9(12), pages 1-52, December.
    17. Barbón, A. & Bayón-Cueli, C. & Bayón, L. & Rodríguez-Suanzes, C., 2022. "Analysis of the tilt and azimuth angles of photovoltaic systems in non-ideal positions for urban applications," Applied Energy, Elsevier, vol. 305(C).
    18. Zheng, Lingwei & Liu, Zhaokun & Shen, Junnan & Wu, Chenxi, 2018. "Very short-term maximum Lyapunov exponent forecasting tool for distributed photovoltaic output," Applied Energy, Elsevier, vol. 229(C), pages 1128-1139.
    19. Dey, Sumon & Lakshmanan, Madan Kumar & Pesala, Bala, 2018. "Optimal solar tree design for increased flexibility in seasonal energy extraction," Renewable Energy, Elsevier, vol. 125(C), pages 1038-1048.
    20. Cheng, Yuanda & Gao, Min & Dong, Jiankai & Jia, Jie & Zhao, Xudong & Li, Guiqiang, 2018. "Investigation on the daylight and overall energy performance of semi-transparent photovoltaic facades in cold climatic regions of China," Applied Energy, Elsevier, vol. 232(C), pages 517-526.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:188:y:2022:i:c:p:651-669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.