IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v184y2022icp266-279.html
   My bibliography  Save this article

Effect of roughness parameters on performance of solar air heater having artificial wavy roughness using CFD

Author

Listed:
  • Haldar, Ankur
  • Varshney, L.
  • Verma, Prashant

Abstract

The current study used Ansys FLUENT software to perform a computational fluid dynamics analysis of a solar air heater with artificial wavy roughness. Roughness elements were studied for twelve wavy surface configurations with rib heights (e) of 0.7 mm, 1 mm, and 1.4 mm and pitch (p) of 10, 15, 20, and 25 mm. A 2D computational domain is modelled and the involved differential equations are solved using a finite volume method. To solve the transport equations for turbulent flow and energy dissipation rate, the RNG k-ε turbulence model with enhanced wall function is employed. For a uniform heat flow of 1000 W/m2, the effect of roughness parameter on Nusselt number, friction factor, and thermo-hydraulic performance parameter (THPP) is investigated. On the basis of the THPP, the best geometric parameter values are found in the Reynolds Number (Re) range of 3800–18,000. At Re of 12,000, the optimal THPP is 1.96, which corresponds to a rib height of 0.7 mm and a pitch of 15 mm.

Suggested Citation

  • Haldar, Ankur & Varshney, L. & Verma, Prashant, 2022. "Effect of roughness parameters on performance of solar air heater having artificial wavy roughness using CFD," Renewable Energy, Elsevier, vol. 184(C), pages 266-279.
  • Handle: RePEc:eee:renene:v:184:y:2022:i:c:p:266-279
    DOI: 10.1016/j.renene.2021.11.088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121016736
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.11.088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Sharad & Saini, R.P., 2009. "CFD based performance analysis of a solar air heater duct provided with artificial roughness," Renewable Energy, Elsevier, vol. 34(5), pages 1285-1291.
    2. Singh, Sukhmeet & Singh, Bikramjit & Hans, V.S. & Gill, R.S., 2015. "CFD (computational fluid dynamics) investigation on Nusselt number and friction factor of solar air heater duct roughened with non-uniform cross-section transverse rib," Energy, Elsevier, vol. 84(C), pages 509-517.
    3. Gawande, Vipin B. & Dhoble, A.S. & Zodpe, D.B. & Chamoli, Sunil, 2016. "A review of CFD methodology used in literature for predicting thermo-hydraulic performance of a roughened solar air heater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 550-605.
    4. Prasad, K. & Mullick, S. C., 1983. "Heat transfer characteristics of a solar air heater used for drying purposes," Applied Energy, Elsevier, vol. 13(2), pages 83-93, February.
    5. Bhushan, Brij & Singh, Ranjit, 2010. "A review on methodology of artificial roughness used in duct of solar air heaters," Energy, Elsevier, vol. 35(1), pages 202-212.
    6. Thakur, Deep Singh & Khan, Mohd. Kaleem & Pathak, Manabendra, 2017. "Solar air heater with hyperbolic ribs: 3D simulation with experimental validation," Renewable Energy, Elsevier, vol. 113(C), pages 357-368.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prasad, Jay Shankar & Datta, Aparesh & Mondal, Sirshendu, 2024. "Flow and thermal behavior of solar air heater with grooved roughness," Renewable Energy, Elsevier, vol. 220(C).
    2. Zhang, Pu & Xia, Peng & Guo, Xueyan & Xie, Shaozhang & Ma, Wensheng, 2022. "A CFD-adjoint reverse design of transverse rib profile for enhancing thermo-hydraulic performance in the solar air heater," Renewable Energy, Elsevier, vol. 198(C), pages 587-601.
    3. Hwi-Ung Choi & Kwang-Am Moon & Seong-Bhin Kim & Kwang-Hwan Choi, 2023. "CFD Analysis of the Heat Transfer and Fluid Flow Characteristics Using the Rectangular Rib Attached to the Fin Surface in a Solar Air Heater," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    4. Kumar, Dheeraj & Layek, Apurba, 2022. "Nusselt number and friction characteristics of solar air heater roughened with novel twisted V-shaped staggered ribs using liquid crystal thermography," Renewable Energy, Elsevier, vol. 201(P1), pages 651-666.
    5. Visarion Cătălin Ifrim & Laurențiu Dan Milici & Pavel Atănăsoae & Daniela Irimia & Radu Dumitru Pentiuc, 2022. "Future Research Tendencies and Possibilities of Using Cogeneration Applications of Solar Air Heaters: A Bibliometric Analysis," Energies, MDPI, vol. 15(19), pages 1-24, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hwi-Ung Choi & Kwang-Hwan Choi, 2020. "CFD Analysis on the Heat Transfer and Fluid Flow of Solar Air Heater having Transverse Triangular Block at the Bottom of Air Duct," Energies, MDPI, vol. 13(5), pages 1-19, March.
    2. Singh, Amritpal & Singh, Sukhmeet, 2017. "CFD investigation on roughness pitch variation in non-uniform cross-section transverse rib roughness on Nusselt number and friction factor characteristics of solar air heater duct," Energy, Elsevier, vol. 128(C), pages 109-127.
    3. Nidhul, Kottayat & Kumar, Sachin & Yadav, Ajay Kumar & Anish, S., 2020. "Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater: CFD and exergy analysis," Energy, Elsevier, vol. 200(C).
    4. Anil Kumar & Man-Hoe Kim, 2016. "CFD Analysis on the Thermal Hydraulic Performance of an SAH Duct with Multi V-Shape Roughened Ribs," Energies, MDPI, vol. 9(6), pages 1-23, May.
    5. Kumar, Anil & Kim, Man-Hoe, 2016. "Thermohydraulic performance of rectangular ducts with different multiple V-rib roughness shapes: A comprehensive review and comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 635-652.
    6. Singh Yadav, Anil & Kumar Thapak, Manish, 2014. "Artificially roughened solar air heater: Experimental investigations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 370-411.
    7. Yadav, Anil Singh & Bhagoria, J.L., 2013. "Heat transfer and fluid flow analysis of solar air heater: A review of CFD approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 60-79.
    8. Yadav, Anil Singh & Bhagoria, J.L., 2013. "A CFD (computational fluid dynamics) based heat transfer and fluid flow analysis of a solar air heater provided with circular transverse wire rib roughness on the absorber plate," Energy, Elsevier, vol. 55(C), pages 1127-1142.
    9. Kumar, Rajneesh & Goel, Varun & Kumar, Anoop, 2018. "Investigation of heat transfer augmentation and friction factor in triangular duct solar air heater due to forward facing chamfered rectangular ribs: A CFD based analysis," Renewable Energy, Elsevier, vol. 115(C), pages 824-835.
    10. Varun Kumar, B. & Manikandan, G. & Rajesh Kanna, P., 2021. "Enhancement of heat transfer in SAH with polygonal and trapezoidal shape of the rib using CFD," Energy, Elsevier, vol. 234(C).
    11. Gill, R.S. & Hans, V.S. & Saini, J.S. & Singh, Sukhmeet, 2017. "Investigation on performance enhancement due to staggered piece in a broken arc rib roughened solar air heater duct," Renewable Energy, Elsevier, vol. 104(C), pages 148-162.
    12. Singh, Sukhmeet & Chander, Subhash & Saini, J.S., 2011. "Heat transfer and friction factor correlations of solar air heater ducts artificially roughened with discrete V-down ribs," Energy, Elsevier, vol. 36(8), pages 5053-5064.
    13. Gawande, Vipin B. & Dhoble, A.S. & Zodpe, D.B., 2014. "Effect of roughness geometries on heat transfer enhancement in solar thermal systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 347-378.
    14. Singh, Sukhmeet & Singh, Bikramjit & Hans, V.S. & Gill, R.S., 2015. "CFD (computational fluid dynamics) investigation on Nusselt number and friction factor of solar air heater duct roughened with non-uniform cross-section transverse rib," Energy, Elsevier, vol. 84(C), pages 509-517.
    15. Hedau, Ankush & Saini, R.P., 2023. "Thermo-hydraulic performance of double pass solar air heater duct having semi-circular tubes and perforated blocks as artificial roughness," Renewable Energy, Elsevier, vol. 205(C), pages 543-562.
    16. Dezan, Daniel J. & Rocha, André D. & Ferreira, Wallace G., 2020. "Parametric sensitivity analysis and optimisation of a solar air heater with multiple rows of longitudinal vortex generators," Applied Energy, Elsevier, vol. 263(C).
    17. Nidhul, Kottayat & Yadav, Ajay Kumar & Anish, S. & Kumar, Sachin, 2021. "Critical review of ribbed solar air heater and performance evaluation of various V-rib configuration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    18. Oztop, Hakan F. & Bayrak, Fatih & Hepbasli, Arif, 2013. "Energetic and exergetic aspects of solar air heating (solar collector) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 59-83.
    19. Singh, Satyender & Dhiman, Prashant, 2016. "Thermal performance of double pass packed bed solar air heaters – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1010-1031.
    20. Prasad, Jay Shankar & Datta, Aparesh & Mondal, Sirshendu, 2024. "Numerical analysis of a solar air heater with offset transverse ribs placed near the absorber plate," Renewable Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:184:y:2022:i:c:p:266-279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.