IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v172y2021icp424-439.html
   My bibliography  Save this article

Numerical investigation of co-gasification of coal and PET in a fluidized bed reactor

Author

Listed:
  • Du, Shaohua
  • Yuan, Shouzheng
  • Zhou, Qiang

Abstract

Co-gasification of waste plastics and coal mixture becomes a promising way for the elimination of waste plastics. This study deals with the numerical simulation of the co-gasification of PET and coal in a fluidized bed reactor. The variations of both particle size and its density are taken into account, and the devolatilization reaction rate is also modified with the aim to consider the effect of particle inner temperature gradient. The effectiveness of the current model has been justified by comparing the simulation results with the available experimental data. In addition, the effects of inlet gas velocity, solid feed position, and initial particle size on the hydrodynamics and co-gasification reaction are discussed in detail. The results show that the conversion of volatiles leads to the formation of syngas and ultimately causes an intense fluctuation in the bed. A higher solid feed position induces the weak bed fluctuation and non-uniform gas temperature distribution. Furthermore, the larger initial size of combustible particle deteriorates the interphase heat transfer and postpones the generation of syngas. The particle shrinkage and the inner temperature gradient strongly affect the hydrodynamics and devolatilization reaction rate, thus, it is important to consider such factors in the simulations of gasification process.

Suggested Citation

  • Du, Shaohua & Yuan, Shouzheng & Zhou, Qiang, 2021. "Numerical investigation of co-gasification of coal and PET in a fluidized bed reactor," Renewable Energy, Elsevier, vol. 172(C), pages 424-439.
  • Handle: RePEc:eee:renene:v:172:y:2021:i:c:p:424-439
    DOI: 10.1016/j.renene.2021.03.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812100389X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.03.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chhabra, Vibhuti & Bambery, Keith & Bhattacharya, Sankar & Shastri, Yogendra, 2020. "Thermal and in situ infrared analysis to characterise the slow pyrolysis of mixed municipal solid waste (MSW) and its components," Renewable Energy, Elsevier, vol. 148(C), pages 388-401.
    2. Klimanek, Adam & Bigda, Joanna, 2018. "CFD modelling of CO2 enhanced gasification of coal in a pressurized circulating fluidized bed reactor," Energy, Elsevier, vol. 160(C), pages 710-719.
    3. Veksha, Andrei & Giannis, Apostolos & Yuan, Guoan & Tng, Jiahui & Chan, Wei Ping & Chang, Victor W.-C. & Lisak, Grzegorz & Lim, Teik-Thye, 2019. "Distribution and modeling of tar compounds produced during downdraft gasification of municipal solid waste," Renewable Energy, Elsevier, vol. 136(C), pages 1294-1303.
    4. Zhong, Hanbin & Xu, Fei & Zhang, Juntao & Zhu, Yuqin & Liang, Shengrong & Niu, Ben & Zhang, Xinyu, 2019. "Variation of Geldart classification in MFM simulation of biomass fast pyrolysis considering the decrease of particle density and diameter," Renewable Energy, Elsevier, vol. 135(C), pages 208-217.
    5. Ferreiro, A.I. & Segurado, R. & Costa, M., 2020. "Modelling soot formation during biomass gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Zhong, Hanbin & Xiong, Qingang & Zhu, Yuqin & Liang, Shengrong & Zhang, Juntao & Niu, Ben & Zhang, Xinyu, 2019. "CFD modeling of the effects of particle shrinkage and intra-particle heat conduction on biomass fast pyrolysis," Renewable Energy, Elsevier, vol. 141(C), pages 236-245.
    7. Wang, Shuai & Shen, Yansong, 2020. "CFD-DEM study of biomass gasification in a fluidized bed reactor: Effects of key operating parameters," Renewable Energy, Elsevier, vol. 159(C), pages 1146-1164.
    8. Monteiro, Eliseu & Ismail, Tamer M. & Ramos, Ana & Abd El-Salam, M. & Brito, Paulo & Rouboa, Abel, 2018. "Experimental and modeling studies of Portuguese peach stone gasification on an autothermal bubbling fluidized bed pilot plant," Energy, Elsevier, vol. 142(C), pages 862-877.
    9. Cardoso, João & Silva, Valter & Eusébio, Daniela & Brito, Paulo & Boloy, Ronney Mancebo & Tarelho, Luís & Silveira, José Luz, 2019. "Comparative 2D and 3D analysis on the hydrodynamics behaviour during biomass gasification in a pilot-scale fluidized bed reactor," Renewable Energy, Elsevier, vol. 131(C), pages 713-729.
    10. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, Shaohua & Wang, Jiahao & Yu, Yaxiong & Zhou, Qiang, 2023. "Coarse-grained CFD-DEM simulation of coal and biomass co-gasification process in a fluidized bed reactor: Effects of particle size distribution and operating pressure," Renewable Energy, Elsevier, vol. 202(C), pages 483-498.
    2. Fazil, A. & Kumar, Sandeep & Mahajani, Sanjay M., 2022. "Downdraft co-gasification of high ash biomass and plastics," Energy, Elsevier, vol. 243(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ismail, Tamer M. & Ramos, Ana & Monteiro, Eliseu & El-Salam, M. Abd & Rouboa, Abel, 2020. "Parametric studies in the gasification agent and fluidization velocity during oxygen-enriched gasification of biomass in a pilot-scale fluidized bed: Experimental and numerical assessment," Renewable Energy, Elsevier, vol. 147(P1), pages 2429-2439.
    2. Yang, Shiliang & Fan, Feihu & Hu, Jianhang & Wang, Hua, 2020. "Particle-scale evaluation of the biomass steam-gasification process in a conical spouted bed gasifier," Renewable Energy, Elsevier, vol. 162(C), pages 844-860.
    3. Zhou, Tao & Yang, Shiliang & Wei, Yonggang & Hu, Jianhang & Wang, Hua, 2020. "Impact of wide particle size distribution on the gasification performance of biomass in a bubbling fluidized bed gasifier," Renewable Energy, Elsevier, vol. 148(C), pages 534-547.
    4. Yang, Shiliang & Wang, Hua & Wei, Yonggang & Hu, Jianhang & Chew, Jia Wei, 2019. "Eulerian-Lagrangian simulation of air-steam biomass gasification in a three-dimensional bubbling fluidized gasifier," Energy, Elsevier, vol. 181(C), pages 1075-1093.
    5. Ramos, Ana & Rouboa, Abel, 2020. "Syngas production strategies from biomass gasification: Numerical studies for operational conditions and quality indexes," Renewable Energy, Elsevier, vol. 155(C), pages 1211-1221.
    6. Matheus Oliveira & Ana Ramos & Tamer M. Ismail & Eliseu Monteiro & Abel Rouboa, 2022. "A Review on Plasma Gasification of Solid Residues: Recent Advances and Developments," Energies, MDPI, vol. 15(4), pages 1-21, February.
    7. Zhong, Hanbin & Xiong, Qingang & Yin, Lina & Zhang, Juntao & Zhu, Yuqin & Liang, Shengrong & Niu, Ben & Zhang, Xinyu, 2020. "CFD-based reduced-order modeling of fluidized-bed biomass fast pyrolysis using artificial neural network," Renewable Energy, Elsevier, vol. 152(C), pages 613-626.
    8. Wan, Zhanghao & Hu, Jianhang & Qi, Xianjin, 2021. "Numerical analysis of hydrodynamics and thermochemical property of biomass gasification in a pilot-scale circulating fluidized bed," Energy, Elsevier, vol. 225(C).
    9. Vikram, Shruti & Deore, Sujeetkumar P. & De Blasio, Cataldo & Mahajani, Sanjay M. & Kumar, Sandeep, 2023. "Air gasification of high-ash solid waste in a pilot-scale downdraft gasifier: Experimental and numerical analysis," Energy, Elsevier, vol. 270(C).
    10. Salem, Ahmed M. & Elsherbiny, Khaled, 2022. "Innovative concept for the effect of changing gasifying medium and injection points on syngas quality: Towards higher H2 production, and Free-CO2 emissions," Energy, Elsevier, vol. 261(PB).
    11. Wan, Zhanghao & Yang, Shiliang & Wei, Yonggang & Hu, Jianhang & Wang, Hua, 2020. "CFD modeling of the flow dynamics and gasification in the combustor and gasifier of a dual fluidized bed pilot plant," Energy, Elsevier, vol. 198(C).
    12. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    13. Luís Carmo-Calado & Manuel Jesús Hermoso-Orzáez & Roberta Mota-Panizio & Bruno Guilherme-Garcia & Paulo Brito, 2020. "Co-Combustion of Waste Tires and Plastic-Rubber Wastes with Biomass Technical and Environmental Analysis," Sustainability, MDPI, vol. 12(3), pages 1-19, February.
    14. Du, Yanxiang & Liang, Jin & Yang, Shiliang & Hu, Jianhang & Bao, Guirong & Wang, Hua, 2022. "Numerical investigation of the Ni-based catalytic methanation process in a bubbling fluidized bed reactor," Energy, Elsevier, vol. 257(C).
    15. Qatan, Hesham Sadeq Obaid & Wan Ab Karim Ghani, Wan Azlina & Md Said, Mohamad Syazarudin, 2023. "Prediction and optimization of syngas production from Napier grass air gasification via kinetic modelling and response surface methodology," Energy, Elsevier, vol. 270(C).
    16. Wang, Cui & Zhu, Chao & Huang, Jianbing & Li, Linfeng & Jin, Hui, 2021. "Enhancement of depolymerization slag gasification in supercritical water and its gasification performance in fluidized bed reactor," Renewable Energy, Elsevier, vol. 168(C), pages 829-837.
    17. Dong, Leilei & Alexiadis, Alessio, 2023. "Simulation of char burnout characteristics of biomass/coal blend with a simplified single particle reaction model," Energy, Elsevier, vol. 264(C).
    18. Farahani, Moein Farmahini & Akbari, Shahin & Sadeghi, Sadegh & Bidabadi, Mehdi & Moghadam, Mohammadamir Ghasemian & Xu, Fei, 2020. "Analytical study of transient counter-flow non-premixed combustion of biomass in presence of thermal radiation," Renewable Energy, Elsevier, vol. 159(C), pages 312-325.
    19. Chavando, José Antonio Mayoral & Silva, Valter Bruno & Tarelho, Luís A.C. & Cardoso, João Sousa & Eusébio, Daniela, 2022. "Snapshot review of refuse-derived fuels," Utilities Policy, Elsevier, vol. 74(C).
    20. Sérgio Ferreira & Eliseu Monteiro & Paulo Brito & Cândida Vilarinho, 2019. "A Holistic Review on Biomass Gasification Modified Equilibrium Models," Energies, MDPI, vol. 12(1), pages 1-31, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:172:y:2021:i:c:p:424-439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.