IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v141y2019icp236-245.html

CFD modeling of the effects of particle shrinkage and intra-particle heat conduction on biomass fast pyrolysis

Author

Listed:
  • Zhong, Hanbin
  • Xiong, Qingang
  • Zhu, Yuqin
  • Liang, Shengrong
  • Zhang, Juntao
  • Niu, Ben
  • Zhang, Xinyu

Abstract

This study numerically characterizes the combined effects of particle shrinkage and intra-particle heat conduction on biomass fast pyrolysis using computational fluid dynamics (CFD). The so-called multi-fluid model (MFM) was employed to simulate hydrodynamics and biomass fast pyrolysis was modeled by a lumped kinetics. The particle shrinkage and intra-particle heat conduction were modeled through modification of the diameter of biomass phases and reaction rate constant. Four cases with different combinations of particle shrinkage and intra-particle heat conduction were designed and their performances regarding product yields were compared. The hydrodynamics and reaction behaviors in the reactor were predicted. The distributions of particle diameter and density, product yields, and char properties were analyzed and compared with the experiments. The mechanisms for the effects of these two models were revealed. Both the particle shrinkage and intra-particle heat conduction effects lead to lower tar yield and higher char yield. The predicted product yields considering both models are in the best agreement with the experiment results.

Suggested Citation

  • Zhong, Hanbin & Xiong, Qingang & Zhu, Yuqin & Liang, Shengrong & Zhang, Juntao & Niu, Ben & Zhang, Xinyu, 2019. "CFD modeling of the effects of particle shrinkage and intra-particle heat conduction on biomass fast pyrolysis," Renewable Energy, Elsevier, vol. 141(C), pages 236-245.
  • Handle: RePEc:eee:renene:v:141:y:2019:i:c:p:236-245
    DOI: 10.1016/j.renene.2019.04.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119304793
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.04.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Kan, Tao & Strezov, Vladimir & Evans, Tim J., 2016. "Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1126-1140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Leilei & Alexiadis, Alessio, 2023. "Simulation of char burnout characteristics of biomass/coal blend with a simplified single particle reaction model," Energy, Elsevier, vol. 264(C).
    2. Thoharudin, & Hsiau, Shu-San & Chen, Yi-Shun & Yang, Shouyin, 2022. "Numerical modeling of biomass fast pyrolysis by using an improved comprehensive reaction scheme for energy analysis," Renewable Energy, Elsevier, vol. 181(C), pages 355-364.
    3. Brillard, A. & Brilhac, J.F., 2020. "Improvements of global models for the determination of the kinetic parameters associated to the thermal degradation of lignocellulosic materials under low heating rates," Renewable Energy, Elsevier, vol. 146(C), pages 1498-1509.
    4. Hosseinzadeh, Saman & Fattahi, Abolfazl & Sadeghi, Sadegh & Rahmani, Ebrahim & Bidabadi, Mehdi & Zarei, Fatemeh & Xu, Fei, 2020. "Mathematical analysis of steady-state non-premixed multi-zone combustion of porous biomass particles under counter-flow configuration," Renewable Energy, Elsevier, vol. 159(C), pages 705-725.
    5. Kardaś, Dariusz & Hercel, Paulina & Polesek-Karczewska, Sylwia & Wardach-Świȩcicka, Izabela, 2019. "A novel insight into biomass pyrolysis – The process analysis by identifying timescales of heat diffusion, heating rate and reaction rate," Energy, Elsevier, vol. 189(C).
    6. Farahani, Moein Farmahini & Akbari, Shahin & Sadeghi, Sadegh & Bidabadi, Mehdi & Moghadam, Mohammadamir Ghasemian & Xu, Fei, 2020. "Analytical study of transient counter-flow non-premixed combustion of biomass in presence of thermal radiation," Renewable Energy, Elsevier, vol. 159(C), pages 312-325.
    7. Zhou, Tao & Yang, Shiliang & Wei, Yonggang & Hu, Jianhang & Wang, Hua, 2020. "Impact of wide particle size distribution on the gasification performance of biomass in a bubbling fluidized bed gasifier," Renewable Energy, Elsevier, vol. 148(C), pages 534-547.
    8. Kaczor, Zuzanna & Buliński, Zbigniew & Werle, Sebastian, 2020. "Modelling approaches to waste biomass pyrolysis: a review," Renewable Energy, Elsevier, vol. 159(C), pages 427-443.
    9. Yang, Shiliang & Fan, Feihu & Hu, Jianhang & Wang, Hua, 2020. "Particle-scale evaluation of the biomass steam-gasification process in a conical spouted bed gasifier," Renewable Energy, Elsevier, vol. 162(C), pages 844-860.
    10. Kabir, Faryal & Gulfraz, Muhammad & Raja, Ghazala Kaukab & Inam-ul-Haq, Muhammad & Awais, Muhammad & Mustafa, Muhammad Salman & Khan, Sami Ullah & Tlili, Iskander & Shadloo, Mostafa Safdari, 2020. "Screening of native hyper-lipid producing microalgae strains for biomass and lipid production," Renewable Energy, Elsevier, vol. 160(C), pages 1295-1307.
    11. Wang, Cui & Zhu, Chao & Huang, Jianbing & Li, Linfeng & Jin, Hui, 2021. "Enhancement of depolymerization slag gasification in supercritical water and its gasification performance in fluidized bed reactor," Renewable Energy, Elsevier, vol. 168(C), pages 829-837.
    12. Du, Shaohua & Yuan, Shouzheng & Zhou, Qiang, 2021. "Numerical investigation of co-gasification of coal and PET in a fluidized bed reactor," Renewable Energy, Elsevier, vol. 172(C), pages 424-439.
    13. Ding, Yanming & Chen, Wenlu & Zhang, Wenlong & Zhang, Xueting & Li, Changhai & Zhou, Ru & Miao, Fasheng, 2022. "Experimental and numerical simulation study of typical semi-transparent material pyrolysis with in-depth radiation based on micro and bench scales," Energy, Elsevier, vol. 258(C).
    14. Zhong, Hanbin & Xiong, Qingang & Yin, Lina & Zhang, Juntao & Zhu, Yuqin & Liang, Shengrong & Niu, Ben & Zhang, Xinyu, 2020. "CFD-based reduced-order modeling of fluidized-bed biomass fast pyrolysis using artificial neural network," Renewable Energy, Elsevier, vol. 152(C), pages 613-626.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Junmeng & He, Yifeng & Yu, Xi & Banks, Scott W. & Yang, Yang & Zhang, Xingguang & Yu, Yang & Liu, Ronghou & Bridgwater, Anthony V., 2017. "Review of physicochemical properties and analytical characterization of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 309-322.
    2. Lee, Seokhwan & Woo, Sang Hee & Kim, Yongrae & Choi, Young & Kang, Kernyong, 2020. "Combustion and emission characteristics of a diesel-powered generator running with N-butanol/coffee ground pyrolysis oil/diesel blended fuel," Energy, Elsevier, vol. 206(C).
    3. Li, Shuangjun & Yuan, Xiangzhou & Deng, Shuai & Zhao, Li & Lee, Ki Bong, 2021. "A review on biomass-derived CO2 adsorption capture: Adsorbent, adsorber, adsorption, and advice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    4. Hongbo Du, & Deng, Fang & Kommalapati, Raghava R. & Amarasekara, Ananda S., 2020. "Iron based catalysts in biomass processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. JoungDu Shin & SangWon Park & Changyoon Jeong, 2020. "Assessment of Agro-Environmental Impacts for Supplemented Methods to Biochar Manure Pellets during Rice ( Oryza sativa L.) Cultivation," Energies, MDPI, vol. 13(8), pages 1-14, April.
    6. Kawale, Harshal D. & Kishore, Nanda, 2020. "Comparative study on pyrolysis of Delonix Regia, Pinewood sawdust and their co-feed for plausible bio-fuels production," Energy, Elsevier, vol. 203(C).
    7. Yang, Yuhan & Wang, Tiancheng & Hu, Hongyun & Yao, Dingding & Zou, Chan & Xu, Kai & Li, Xian & Yao, Hong, 2021. "Influence of partial components removal on pyrolysis behavior of lignocellulosic biowaste in molten salts," Renewable Energy, Elsevier, vol. 180(C), pages 616-625.
    8. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    9. Ayala-Cortés, Alejandro & Arcelus-Arrillaga, Pedro & Millan, Marcos & Arancibia-Bulnes, Camilo A. & Valadés-Pelayo, Patricio J. & Villafán-Vidales, Heidi Isabel, 2021. "Solar integrated hydrothermal processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    10. Qin, Fanzhi & Zhang, Chen & Zeng, Guangming & Huang, Danlian & Tan, Xiaofei & Duan, Abing, 2022. "Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    11. Filipe H. B. Sosa & Rafael M. Dias & André M. da Costa Lopes & João A. P. Coutinho & Mariana C. da Costa, 2020. "Fast and Efficient Method to Evaluate the Potential of Eutectic Solvents to Dissolve Lignocellulosic Components," Sustainability, MDPI, vol. 12(8), pages 1-15, April.
    12. Shao, Shanshan & Zhang, Pengfei & Xiang, Xianliang & Li, Xiaohua & Zhang, Huiyan, 2022. "Promoted ketonization of bagasse pyrolysis gas over red mud-based oxides," Renewable Energy, Elsevier, vol. 190(C), pages 11-18.
    13. Chen, Xiangmeng & Shafizadeh, Alireza & Shahbeik, Hossein & Nadian, Mohammad Hossein & Golvirdizadeh, Milad & Peng, Wanxi & Lam, Su Shiung & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2025. "Enhanced bio-oil production from biomass catalytic pyrolysis using machine learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
    14. Zhu, Youjian & Wu, Lei & Liu, Huihui & Yang, Wei & Li, Hui & Zhang, Wennan & Li, Yu & Yang, Haiping & Jin, Yanling & Zhao, Hai, 2025. "Catalytic pyrolysis of duckweed with phosphoric acid: Products yield and composition," Renewable Energy, Elsevier, vol. 240(C).
    15. Guo, Feiqiang & Li, Xiaolei & Wang, Yan & Liu, Yuan & Li, Tiantao & Guo, Chenglong, 2017. "Characterization of Zhundong lignite and biomass co-pyrolysis in a thermogravimetric analyzer and a fixed bed reactor," Energy, Elsevier, vol. 141(C), pages 2154-2163.
    16. Alsulami, Radi A. & El-Sayed, Saad A. & Eltaher, Mohamed A. & Mohammad, Akram & Almitani, Khalid H. & Mostafa, Mohamed E., 2023. "Pyrolysis kinetics and thermal degradation characteristics of coffee, date seed, and prickly pear wastes and their blends," Renewable Energy, Elsevier, vol. 216(C).
    17. Wang, Chu & Yuan, Xinhua & Li, Shanshan & Zhu, Xifeng, 2021. "Enrichment of phenolic products in walnut shell pyrolysis bio-oil by combining torrefaction pretreatment with fractional condensation," Renewable Energy, Elsevier, vol. 169(C), pages 1317-1329.
    18. Sitek, Tomáš & Pospíšil, Jiří & Poláčik, Ján & Špiláček, Michal & Varbanov, Petar, 2019. "Fine combustion particles released during combustion of unit mass of beechwood," Renewable Energy, Elsevier, vol. 140(C), pages 390-396.
    19. Wang, Wei & Zhong, Zhaoping & Zheng, Xiang & Ye, Qihang & Li, Yihui & Yang, Yuxuan & Qi, Renzhi, 2025. "Catalytic co-pyrolysis of hydrolyzed lignin and waste tires over NiMo modified HZSM-5/MCM-41 composite molecular sieve in microwave fluidized bed for monocyclic aromatic hydrocarbons," Energy, Elsevier, vol. 329(C).
    20. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:141:y:2019:i:c:p:236-245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.