IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v168y2021icp829-837.html
   My bibliography  Save this article

Enhancement of depolymerization slag gasification in supercritical water and its gasification performance in fluidized bed reactor

Author

Listed:
  • Wang, Cui
  • Zhu, Chao
  • Huang, Jianbing
  • Li, Linfeng
  • Jin, Hui

Abstract

Supercritical water gasification (SCWG) can achieve efficient utilization of solid wastes, including depolymerization slag, biomass, municipal sludge, and others, and can produce hydrogen-rich gas. But phenolic intermediates produced during the gasification process are difficult to be gasified. It restricted the increase of conversion efficiency. Thus, in this paper, two effective schemes were put forward to raise the gasification efficiency of depolymerization slag. The first one was to add oxidants to promote the decomposition of hydrolysates. Carbon gasification efficiency (CGE) and hydrogen gasification efficiency (HGE) reached 71% and 74% respectively at the time of 1200 s. They raised by 41.6% and 60.5%, separately compared with non-oxidants addition. The second one was to raise the reaction temperature since a higher temperature can accelerate the reaction rate and obtain a high hydrogen yield. The results showed that hydrogen percentage increased by 32.82% and CGE and HGE increased by 35.39% and 219.85%, respectively when the reaction temperature raised by 200 °C. Based on the obtained gasification mechanism, the catalytic gasification.

Suggested Citation

  • Wang, Cui & Zhu, Chao & Huang, Jianbing & Li, Linfeng & Jin, Hui, 2021. "Enhancement of depolymerization slag gasification in supercritical water and its gasification performance in fluidized bed reactor," Renewable Energy, Elsevier, vol. 168(C), pages 829-837.
  • Handle: RePEc:eee:renene:v:168:y:2021:i:c:p:829-837
    DOI: 10.1016/j.renene.2020.12.104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120320449
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.12.104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Bin & Wang, Weizuo & Jin, Hui, 2020. "Experimental study on gasification performance of polypropylene (PP) plastics in supercritical water," Energy, Elsevier, vol. 191(C).
    2. Onursal Yakaboylu & John Harinck & K. G. Smit & Wiebren De Jong, 2015. "Supercritical Water Gasification of Biomass: A Literature and Technology Overview," Energies, MDPI, vol. 8(2), pages 1-36, January.
    3. Li, Chunshan & Suzuki, Kenzi, 2009. "Tar property, analysis, reforming mechanism and model for biomass gasification--An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 594-604, April.
    4. Zhong, Hanbin & Xiong, Qingang & Zhu, Yuqin & Liang, Shengrong & Zhang, Juntao & Niu, Ben & Zhang, Xinyu, 2019. "CFD modeling of the effects of particle shrinkage and intra-particle heat conduction on biomass fast pyrolysis," Renewable Energy, Elsevier, vol. 141(C), pages 236-245.
    5. Guo, Y. & Wang, S.Z. & Xu, D.H. & Gong, Y.M. & Ma, H.H. & Tang, X.Y., 2010. "Review of catalytic supercritical water gasification for hydrogen production from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 334-343, January.
    6. Momirlan, M. & Veziroglu, T. N., 2002. "Current status of hydrogen energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(1-2), pages 141-179.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Yunan & Yi, Lei & Wei, Wenwen & Jin, Hui & Guo, Liejin, 2022. "Hydrogen production by sewage sludge gasification in supercritical water with high heating rate batch reactor," Energy, Elsevier, vol. 238(PA).
    2. Patel, Vipul R. & Bhatt, Nikhil, 2021. "Aquatic weed Spirodela polyrhiza, a potential source for energy generation and other commodity chemicals production," Renewable Energy, Elsevier, vol. 173(C), pages 455-465.
    3. Wang, Cui & Li, Linfeng & Chen, Yunan & Ge, Zhiwei & Jin, Hui, 2021. "Supercritical water gasification of wheat straw: Composition of reaction products and kinetic study," Energy, Elsevier, vol. 227(C).
    4. Gomes, J.G. & Mitoura, J. & Guirardello, R., 2022. "Thermodynamic analysis for hydrogen production from the reaction of subcritical and supercritical gasification of the C. Vulgaris microalgae," Energy, Elsevier, vol. 260(C).
    5. Chen, Jingwei & Fu, Liangyu & Tian, Ming & Kang, Siyi & E, Jiaqiang, 2022. "Comparison and synergistic effect analysis on supercritical water gasification of waste thermoplastic plastics based on orthogonal experiments," Energy, Elsevier, vol. 261(PA).
    6. Liu, Jia & Hu, Nan & Fan, Li-Wu, 2022. "Optimal design and thermodynamic analysis on the hydrogen oxidation reactor in a combined hydrogen production and power generation system based on coal gasification in supercritical water," Energy, Elsevier, vol. 238(PB).
    7. Tatyana Iglina & Pavel Iglin & Dmitry Pashchenko, 2022. "Industrial CO 2 Capture by Algae: A Review and Recent Advances," Sustainability, MDPI, vol. 14(7), pages 1-26, March.
    8. Chen, Yunan & Yi, Lei & Yin, Jiarong & Jin, Hui & Guo, Liejin, 2022. "Sewage sludge gasification in supercritical water with fluidized bed reactor: Reaction and product characteristics," Energy, Elsevier, vol. 239(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Yulin & Gong, Mengyue & Xing, Xuelian & Wang, Haoyu & Zeng, Yimin & Xu, Chunbao Charles, 2020. "Supercritical water gasification of biomass model compounds: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    2. De Blasio, Cataldo & De Gisi, Sabino & Molino, Antonio & Simonetti, Marco & Santarelli, Massimo & Björklund-Sänkiaho, Margareta, 2019. "Concerning operational aspects in supercritical water gasification of kraft black liquor," Renewable Energy, Elsevier, vol. 130(C), pages 891-901.
    3. Nurdiawati, Anissa & Zaini, Ilman Nuran & Irhamna, Adrian Rizqi & Sasongko, Dwiwahju & Aziz, Muhammad, 2019. "Novel configuration of supercritical water gasification and chemical looping for highly-efficient hydrogen production from microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 369-381.
    4. Zhang, Bowei & Guo, Simao & Jin, Hui, 2022. "Production forecast analysis of BP neural network based on Yimin lignite supercritical water gasification experiment results," Energy, Elsevier, vol. 246(C).
    5. Daniele Castello & Birgit Rolli & Andrea Kruse & Luca Fiori, 2017. "Supercritical Water Gasification of Biomass in a Ceramic Reactor: Long-Time Batch Experiments," Energies, MDPI, vol. 10(11), pages 1-17, October.
    6. Özdenkçi, Karhan & De Blasio, Cataldo & Sarwar, Golam & Melin, Kristian & Koskinen, Jukka & Alopaeus, Ville, 2019. "Techno-economic feasibility of supercritical water gasification of black liquor," Energy, Elsevier, vol. 189(C).
    7. Shahbeik, Hossein & Peng, Wanxi & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Guillemin, Gilles J. & Fallahi, Alireza & Amiri, Hamid & Rehan, Mohammad & Raikwar, Deepak & Latine, Hannes & Pandalon, 2022. "Synthesis of liquid biofuels from biomass by hydrothermal gasification: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Wang, Cui & Li, Linfeng & Chen, Yunan & Ge, Zhiwei & Jin, Hui, 2021. "Supercritical water gasification of wheat straw: Composition of reaction products and kinetic study," Energy, Elsevier, vol. 227(C).
    9. Özdenkçi, Karhan & Prestipino, Mauro & Björklund-Sänkiaho, Margareta & Galvagno, Antonio & De Blasio, Cataldo, 2020. "Alternative energy valorization routes of black liquor by stepwise supercritical water gasification: Effect of process parameters on hydrogen yield and energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Chen, Jingwei & Fu, Liangyu & Tian, Ming & Kang, Siyi & E, Jiaqiang, 2022. "Comparison and synergistic effect analysis on supercritical water gasification of waste thermoplastic plastics based on orthogonal experiments," Energy, Elsevier, vol. 261(PA).
    11. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    12. Ahmed, A.M.A & Salmiaton, A. & Choong, T.S.Y & Wan Azlina, W.A.K.G., 2015. "Review of kinetic and equilibrium concepts for biomass tar modeling by using Aspen Plus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1623-1644.
    13. Kothari, Richa & Singh, D.P. & Tyagi, V.V. & Tyagi, S.K., 2012. "Fermentative hydrogen production – An alternative clean energy source," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2337-2346.
    14. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    15. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    16. Keramiotis, Ch. & Vourliotakis, G. & Skevis, G. & Founti, M.A. & Esarte, C. & Sánchez, N.E. & Millera, A. & Bilbao, R. & Alzueta, M.U., 2012. "Experimental and computational study of methane mixtures pyrolysis in a flow reactor under atmospheric pressure," Energy, Elsevier, vol. 43(1), pages 103-110.
    17. Mohamed Magdeldin & Thomas Kohl & Cataldo De Blasio & Mika Järvinen & Song Won Park & Reinaldo Giudici, 2016. "The BioSCWG Project: Understanding the Trade-Offs in the Process and Thermal Design of Hydrogen and Synthetic Natural Gas Production," Energies, MDPI, vol. 9(10), pages 1-27, October.
    18. Liu, Zhongzhe & Singer, Simcha & Tong, Yiran & Kimbell, Lee & Anderson, Erik & Hughes, Matthew & Zitomer, Daniel & McNamara, Patrick, 2018. "Characteristics and applications of biochars derived from wastewater solids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 650-664.
    19. Julius Akinbomi & Mohammad J. Taherzadeh, 2015. "Evaluation of Fermentative Hydrogen Production from Single and Mixed Fruit Wastes," Energies, MDPI, vol. 8(5), pages 1-20, May.
    20. Łukajtis, Rafał & Hołowacz, Iwona & Kucharska, Karolina & Glinka, Marta & Rybarczyk, Piotr & Przyjazny, Andrzej & Kamiński, Marian, 2018. "Hydrogen production from biomass using dark fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 665-694.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:168:y:2021:i:c:p:829-837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.