IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v189y2019ics0360544219319796.html
   My bibliography  Save this article

Techno-economic feasibility of supercritical water gasification of black liquor

Author

Listed:
  • Özdenkçi, Karhan
  • De Blasio, Cataldo
  • Sarwar, Golam
  • Melin, Kristian
  • Koskinen, Jukka
  • Alopaeus, Ville

Abstract

The objective of this study is to investigate the techno-economic feasibility of supercritical water gasification (SCWG) of black liquor integrated to a Kraft pulp mill. The process simulations have been performed through Aspen Plus software. The assessment includes five integration scenarios: stainless steel 316 or Inconel 625 as the reactor materials and hydrogen or combined heat and power (CHP) as the target products. The results illustrates that Inconel reactor is more profitable for CHP production than stainless steel as well as providing lower production cost of hydrogen. Inconel is also more robust against loss of pulping chemicals and changes in the energy price. However, the assessment uses the experimental yields even though surface-to-volume ratio of the reactor will reduce in the industrial scale. Therefore, the results should be validated in pilot scale as well before implementation. Nevertheless, a special reactor configuration can increase surface area. The techno-economic results can be improved by comprehensive investigations of process conditions including also residence time, the concentration of reactor inlet and heterogeneous catalyst. In addition, the SCWG process integrated to a pulp mill can also receive feedstocks from other biomass sectors. This would improve the economic and environmental performances of those sectors as well.

Suggested Citation

  • Özdenkçi, Karhan & De Blasio, Cataldo & Sarwar, Golam & Melin, Kristian & Koskinen, Jukka & Alopaeus, Ville, 2019. "Techno-economic feasibility of supercritical water gasification of black liquor," Energy, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219319796
    DOI: 10.1016/j.energy.2019.116284
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219319796
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116284?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rönnlund, I. & Myréen, L. & Lundqvist, K. & Ahlbeck, J. & Westerlund, T., 2011. "Waste to energy by industrially integrated supercritical water gasification – Effects of alkali salts in residual by-products from the pulp and paper industry," Energy, Elsevier, vol. 36(4), pages 2151-2163.
    2. Daniele Castello & Birgit Rolli & Andrea Kruse & Luca Fiori, 2017. "Supercritical Water Gasification of Biomass in a Ceramic Reactor: Long-Time Batch Experiments," Energies, MDPI, vol. 10(11), pages 1-17, October.
    3. Saidur, R. & BoroumandJazi, G. & Mekhilef, S. & Mohammed, H.A., 2012. "A review on exergy analysis of biomass based fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1217-1222.
    4. Pettersson, Karin & Harvey, Simon, 2012. "Comparison of black liquor gasification with other pulping biorefinery concepts – Systems analysis of economic performance and CO2 emissions," Energy, Elsevier, vol. 37(1), pages 136-153.
    5. Tekin, Kubilay & Karagöz, Selhan & Bektaş, Sema, 2014. "A review of hydrothermal biomass processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 673-687.
    6. Guo, Y. & Wang, S.Z. & Xu, D.H. & Gong, Y.M. & Ma, H.H. & Tang, X.Y., 2010. "Review of catalytic supercritical water gasification for hydrogen production from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 334-343, January.
    7. Onursal Yakaboylu & John Harinck & K. G. Smit & Wiebren De Jong, 2015. "Supercritical Water Gasification of Biomass: A Literature and Technology Overview," Energies, MDPI, vol. 8(2), pages 1-36, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Famoso, F. & Prestipino, M. & Brusca, S. & Galvagno, A., 2020. "Designing sustainable bioenergy from residual biomass: Site allocation criteria and energy/exergy performance indicators," Applied Energy, Elsevier, vol. 274(C).
    2. Granacher, Julia & Nguyen, Tuong-Van & Castro-Amoedo, Rafael & Maréchal, François, 2022. "Overcoming decision paralysis—A digital twin for decision making in energy system design," Applied Energy, Elsevier, vol. 306(PA).
    3. Guo, Shenghui & Meng, Fanrui & Peng, Pai & Xu, Jialing & Jin, Hui & Chen, Yunan & Guo, Liejin, 2022. "Thermodynamic analysis of the superiority of the direct mass transfer design in the supercritical water gasification system," Energy, Elsevier, vol. 244(PA).
    4. Gomes, J.G. & Mitoura, J. & Guirardello, R., 2022. "Thermodynamic analysis for hydrogen production from the reaction of subcritical and supercritical gasification of the C. Vulgaris microalgae," Energy, Elsevier, vol. 260(C).
    5. Özdenkçi, Karhan & Prestipino, Mauro & Björklund-Sänkiaho, Margareta & Galvagno, Antonio & De Blasio, Cataldo, 2020. "Alternative energy valorization routes of black liquor by stepwise supercritical water gasification: Effect of process parameters on hydrogen yield and energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Qi, Xingang & Li, Xujun & Liu, Fan & Lu, Libo & Jin, Hui & Wei, Wenwen & Chen, Yunan & Guo, Liejin, 2023. "Hydrogen production by kraft black liquor supercritical water gasification: Reaction pathway and kinetic," Energy, Elsevier, vol. 282(C).
    7. Prestipino, Mauro & Salmeri, Fabio & Cucinotta, Filippo & Galvagno, Antonio, 2021. "Thermodynamic and environmental sustainability analysis of electricity production from an integrated cogeneration system based on residual biomass: A life cycle approach," Applied Energy, Elsevier, vol. 295(C).
    8. Cataldo De Blasio & Gabriel Salierno & Andrea Magnano, 2021. "Implications on Feedstock Processing and Safety Issues for Semi-Batch Operations in Supercritical Water Gasification of Biomass," Energies, MDPI, vol. 14(10), pages 1-19, May.
    9. Qi, Xingang & Chen, Yunan & Zhao, Jiuyun & Su, Di & Liu, Fan & Lu, Libo & Jin, Hui & Guo, Liejin, 2023. "Thermodynamic and environmental assessment of black liquor supercritical water gasification integrated online salt recovery polygeneration system," Energy, Elsevier, vol. 278(PA).
    10. Chakraborty, Abhishek & Biswal, Anima & Pandey, Varun & Shadab, Syed & Kalyandeep, K. & Murthy, C.S. & Seshasai, M.V.R. & Rao, P.V.N. & Jain, Niveta & Sehgal, V.K. & Kaushik, Nirmala & Singh, Sanjay &, 2022. "Developing a spatial information system of biomass potential from crop residues over India: A decision support for planning and establishment of biofuel/biomass power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Özdenkçi, Karhan & Prestipino, Mauro & Björklund-Sänkiaho, Margareta & Galvagno, Antonio & De Blasio, Cataldo, 2020. "Alternative energy valorization routes of black liquor by stepwise supercritical water gasification: Effect of process parameters on hydrogen yield and energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Lin, Junhao & Sun, Shichang & Cui, Chongwei & Ma, Rui & Fang, Lin & Zhang, Peixin & Quan, Zonggang & Song, Xin & Yan, Jianglong & Luo, Juan, 2019. "Hydrogen-rich bio-gas generation and optimization in relation to heavy metals immobilization during Pd-catalyzed supercritical water gasification of sludge," Energy, Elsevier, vol. 189(C).
    3. Hu, Yulin & Gong, Mengyue & Xing, Xuelian & Wang, Haoyu & Zeng, Yimin & Xu, Chunbao Charles, 2020. "Supercritical water gasification of biomass model compounds: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    4. Knez, Ž. & Markočič, E. & Leitgeb, M. & Primožič, M. & Knez Hrnčič, M. & Škerget, M., 2014. "Industrial applications of supercritical fluids: A review," Energy, Elsevier, vol. 77(C), pages 235-243.
    5. Wang, Cui & Zhu, Chao & Huang, Jianbing & Li, Linfeng & Jin, Hui, 2021. "Enhancement of depolymerization slag gasification in supercritical water and its gasification performance in fluidized bed reactor," Renewable Energy, Elsevier, vol. 168(C), pages 829-837.
    6. De Blasio, Cataldo & De Gisi, Sabino & Molino, Antonio & Simonetti, Marco & Santarelli, Massimo & Björklund-Sänkiaho, Margareta, 2019. "Concerning operational aspects in supercritical water gasification of kraft black liquor," Renewable Energy, Elsevier, vol. 130(C), pages 891-901.
    7. Florentina Maxim & Iuliana Poenaru & Elena Ecaterina Toma & Giuseppe Stefan Stoian & Florina Teodorescu & Cristian Hornoiu & Speranta Tanasescu, 2021. "Functional Materials for Waste-to-Energy Processes in Supercritical Water," Energies, MDPI, vol. 14(21), pages 1-23, November.
    8. Okolie, Jude A. & Nanda, Sonil & Dalai, Ajay K. & Berruti, Franco & Kozinski, Janusz A., 2020. "A review on subcritical and supercritical water gasification of biogenic, polymeric and petroleum wastes to hydrogen-rich synthesis gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    9. Nurdiawati, Anissa & Zaini, Ilman Nuran & Irhamna, Adrian Rizqi & Sasongko, Dwiwahju & Aziz, Muhammad, 2019. "Novel configuration of supercritical water gasification and chemical looping for highly-efficient hydrogen production from microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 369-381.
    10. Shahbeik, Hossein & Peng, Wanxi & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Guillemin, Gilles J. & Fallahi, Alireza & Amiri, Hamid & Rehan, Mohammad & Raikwar, Deepak & Latine, Hannes & Pandalon, 2022. "Synthesis of liquid biofuels from biomass by hydrothermal gasification: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Cao, Changqing & Xie, Yupeng & Mao, Liuhao & Wei, Wenwen & Shi, Jinwen & Jin, Hui, 2020. "Hydrogen production from supercritical water gasification of soda black liquor with various metal oxides," Renewable Energy, Elsevier, vol. 157(C), pages 24-32.
    12. Kumar, Mayank & Olajire Oyedun, Adetoyese & Kumar, Amit, 2018. "A review on the current status of various hydrothermal technologies on biomass feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1742-1770.
    13. Sandro González-Arias & Abel Zúñiga-Moreno & Ricardo García-Morales & Octavio Elizalde-Solis & Francisco J. Verónico-Sánchez & Sergio O. Flores-Valle, 2021. "Gasification of Psidium guajava L. Waste Using Supercritical Water: Evaluation of Feed Ratio and Moderate Temperatures," Energies, MDPI, vol. 14(9), pages 1-17, April.
    14. Hrnčič, Maša Knez & Kravanja, Gregor & Knez, Željko, 2016. "Hydrothermal treatment of biomass for energy and chemicals," Energy, Elsevier, vol. 116(P2), pages 1312-1322.
    15. Kang, Shimin & Li, Xianglan & Fan, Juan & Chang, Jie, 2013. "Hydrothermal conversion of lignin: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 546-558.
    16. Daniele Castello & Birgit Rolli & Andrea Kruse & Luca Fiori, 2017. "Supercritical Water Gasification of Biomass in a Ceramic Reactor: Long-Time Batch Experiments," Energies, MDPI, vol. 10(11), pages 1-17, October.
    17. Wenran Gao & Hui Li & Karnowo & Bing Song & Shu Zhang, 2020. "Integrated Leaching and Thermochemical Technologies for Producing High-Value Products from Rice Husk: Leaching of Rice Husk with the Aqueous Phases of Bioliquids," Energies, MDPI, vol. 13(22), pages 1-15, November.
    18. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    19. Genel, Salih & Durak, Halil & Durak, Emre Demirer & Güneş, Hasret & Genel, Yaşar, 2023. "Hydrothermal liquefaction of biomass with molybdenum, aluminum, cobalt metal powder catalysts and evaluation of wastewater by fungus cultivation," Renewable Energy, Elsevier, vol. 203(C), pages 20-32.
    20. Mohamed Magdeldin & Thomas Kohl & Cataldo De Blasio & Mika Järvinen & Song Won Park & Reinaldo Giudici, 2016. "The BioSCWG Project: Understanding the Trade-Offs in the Process and Thermal Design of Hydrogen and Synthetic Natural Gas Production," Energies, MDPI, vol. 9(10), pages 1-27, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219319796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.