IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223022338.html
   My bibliography  Save this article

Hydrogen production by kraft black liquor supercritical water gasification: Reaction pathway and kinetic

Author

Listed:
  • Qi, Xingang
  • Li, Xujun
  • Liu, Fan
  • Lu, Libo
  • Jin, Hui
  • Wei, Wenwen
  • Chen, Yunan
  • Guo, Liejin

Abstract

Kraft black liquor (KBL) supercritical water gasification (SCWG) has significant implications for carbon emission reduction and energy efficiency improvement in the pulp industry. This research focuses on investigating the SCWG of KBL under different reaction conditions, including reaction times (5–30 min), temperatures (450–650 °C), and feed concentrations (5%–20%), utilizing a high heating rate batch reactor. The performance of the gasification process is evaluated by analyzing gaseous, liquid, and solid products. Remarkable achievements in carbon gasification efficiency (CGE) of 95.28% and COD removal of 99.90% are attained at 650 °C, 30 min, and 10 wt% feed concentration. The liquid-phase products primarily comprise aromatic compounds, particularly phenolics, with the possible presence of reactive nonaromatic compounds such as cyclopentanone. Lower temperatures favor the formation of solid products, which result from phenolic agglomeration reactions leading to char formation. The research also explores the SCWG reaction pathway of KBL and develops a comprehensive twelve-lumped quantitative kinetic model. This work provides valuable engineering parameters for reactor design, optimization, and numerical simulations, facilitating advancements in SCWG of KBL technology.

Suggested Citation

  • Qi, Xingang & Li, Xujun & Liu, Fan & Lu, Libo & Jin, Hui & Wei, Wenwen & Chen, Yunan & Guo, Liejin, 2023. "Hydrogen production by kraft black liquor supercritical water gasification: Reaction pathway and kinetic," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223022338
    DOI: 10.1016/j.energy.2023.128839
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223022338
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128839?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Bin & Wang, Weizuo & Jin, Hui, 2020. "Experimental study on gasification performance of polypropylene (PP) plastics in supercritical water," Energy, Elsevier, vol. 191(C).
    2. Özdenkçi, Karhan & De Blasio, Cataldo & Sarwar, Golam & Melin, Kristian & Koskinen, Jukka & Alopaeus, Ville, 2019. "Techno-economic feasibility of supercritical water gasification of black liquor," Energy, Elsevier, vol. 189(C).
    3. Cao, Changqing & Xie, Yupeng & Mao, Liuhao & Wei, Wenwen & Shi, Jinwen & Jin, Hui, 2020. "Hydrogen production from supercritical water gasification of soda black liquor with various metal oxides," Renewable Energy, Elsevier, vol. 157(C), pages 24-32.
    4. Holmberg, Jonas M. & Gustavsson, Leif, 2007. "Biomass use in chemical and mechanical pulping with biomass-based energy supply," Resources, Conservation & Recycling, Elsevier, vol. 52(2), pages 331-350.
    5. Chen, Yunan & Yi, Lei & Wei, Wenwen & Jin, Hui & Guo, Liejin, 2022. "Hydrogen production by sewage sludge gasification in supercritical water with high heating rate batch reactor," Energy, Elsevier, vol. 238(PA).
    6. Mohamed Magdeldin & Thomas Kohl & Cataldo De Blasio & Mika Järvinen & Song Won Park & Reinaldo Giudici, 2016. "The BioSCWG Project: Understanding the Trade-Offs in the Process and Thermal Design of Hydrogen and Synthetic Natural Gas Production," Energies, MDPI, vol. 9(10), pages 1-27, October.
    7. Darmawan, Arif & Ajiwibowo, Muhammad W. & Biddinika, Muhammad Kunta & Tokimatsu, Koji & Aziz, Muhammad, 2019. "Black liquor-based hydrogen and power co-production: Combination of supercritical water gasification and syngas chemical looping," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    8. De Blasio, Cataldo & De Gisi, Sabino & Molino, Antonio & Simonetti, Marco & Santarelli, Massimo & Björklund-Sänkiaho, Margareta, 2019. "Concerning operational aspects in supercritical water gasification of kraft black liquor," Renewable Energy, Elsevier, vol. 130(C), pages 891-901.
    9. Cao, Changqing & Guo, Liejin & Jin, Hui & Cao, Wen & Jia, Yi & Yao, Xiangdong, 2017. "System analysis of pulping process coupled with supercritical water gasification of black liquor for combined hydrogen, heat and power production," Energy, Elsevier, vol. 132(C), pages 238-247.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Özdenkçi, Karhan & Prestipino, Mauro & Björklund-Sänkiaho, Margareta & Galvagno, Antonio & De Blasio, Cataldo, 2020. "Alternative energy valorization routes of black liquor by stepwise supercritical water gasification: Effect of process parameters on hydrogen yield and energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Granacher, Julia & Nguyen, Tuong-Van & Castro-Amoedo, Rafael & Maréchal, François, 2022. "Overcoming decision paralysis—A digital twin for decision making in energy system design," Applied Energy, Elsevier, vol. 306(PA).
    3. Qi, Xingang & Chen, Yunan & Zhao, Jiuyun & Su, Di & Liu, Fan & Lu, Libo & Jin, Hui & Guo, Liejin, 2023. "Thermodynamic and environmental assessment of black liquor supercritical water gasification integrated online salt recovery polygeneration system," Energy, Elsevier, vol. 278(PA).
    4. Chen, Yunan & Yi, Lei & Yin, Jiarong & Jin, Hui & Guo, Liejin, 2022. "Sewage sludge gasification in supercritical water with fluidized bed reactor: Reaction and product characteristics," Energy, Elsevier, vol. 239(PB).
    5. Magdeldin, Mohamed & Järvinen, Mika, 2020. "Supercritical water gasification of Kraft black liquor: Process design, analysis, pulp mill integration and economic evaluation," Applied Energy, Elsevier, vol. 262(C).
    6. Xu, Jialing & Rong, Siqi & Sun, Jingli & Peng, Zhiyong & Jin, Hui & Guo, Liejin & Zhang, Xiang & Zhou, Teng, 2022. "Optimal design of non-isothermal supercritical water gasification reactor: From biomass to hydrogen," Energy, Elsevier, vol. 244(PB).
    7. Cataldo De Blasio & Gabriel Salierno & Andrea Magnano, 2021. "Implications on Feedstock Processing and Safety Issues for Semi-Batch Operations in Supercritical Water Gasification of Biomass," Energies, MDPI, vol. 14(10), pages 1-19, May.
    8. Guo, Shenghui & Meng, Fanrui & Peng, Pai & Xu, Jialing & Jin, Hui & Chen, Yunan & Guo, Liejin, 2022. "Thermodynamic analysis of the superiority of the direct mass transfer design in the supercritical water gasification system," Energy, Elsevier, vol. 244(PA).
    9. Gomes, J.G. & Mitoura, J. & Guirardello, R., 2022. "Thermodynamic analysis for hydrogen production from the reaction of subcritical and supercritical gasification of the C. Vulgaris microalgae," Energy, Elsevier, vol. 260(C).
    10. Shahbeik, Hossein & Peng, Wanxi & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Guillemin, Gilles J. & Fallahi, Alireza & Amiri, Hamid & Rehan, Mohammad & Raikwar, Deepak & Latine, Hannes & Pandalon, 2022. "Synthesis of liquid biofuels from biomass by hydrothermal gasification: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Prestipino, Mauro & Salmeri, Fabio & Cucinotta, Filippo & Galvagno, Antonio, 2021. "Thermodynamic and environmental sustainability analysis of electricity production from an integrated cogeneration system based on residual biomass: A life cycle approach," Applied Energy, Elsevier, vol. 295(C).
    12. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    13. Beatrice Castellani & Alberto Maria Gambelli & Elena Morini & Benedetto Nastasi & Andrea Presciutti & Mirko Filipponi & Andrea Nicolini & Federico Rossi, 2017. "Experimental Investigation on CO 2 Methanation Process for Solar Energy Storage Compared to CO 2 -Based Methanol Synthesis," Energies, MDPI, vol. 10(7), pages 1-13, June.
    14. Magdeldin, Mohamed & Kohl, Thomas & Järvinen, Mika, 2017. "Techno-economic assessment of the by-products contribution from non-catalytic hydrothermal liquefaction of lignocellulose residues," Energy, Elsevier, vol. 137(C), pages 679-695.
    15. Chen, Zhewen & Gao, Lin & Zhang, Xiaosong & Han, Wei & Li, Sheng, 2018. "High-efficiency power generation system with integrated supercritical water gasification of coal," Energy, Elsevier, vol. 159(C), pages 810-816.
    16. Bei, Lijing & Ge, Zhiwei & Ren, Changyifan & Su, Di & Shang, Fei & Wang, Yu & Guo, Liejin, 2023. "Numerical study on supercritical water partial oxidation of ethanol with auto-thermal operation," Energy, Elsevier, vol. 264(C).
    17. Laurijssen, Jobien & Marsidi, Marc & Westenbroek, Annita & Worrell, Ernst & Faaij, Andre, 2010. "Paper and biomass for energy?," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1208-1218.
    18. Wang, Xudong & Shao, Yali & Jin, Baosheng, 2021. "Thermodynamic evaluation and modelling of an auto-thermal hybrid system of chemical looping combustion and air separation for power generation coupling with CO2 cycles," Energy, Elsevier, vol. 236(C).
    19. Rahbari, Alireza & Venkataraman, Mahesh B. & Pye, John, 2018. "Energy and exergy analysis of concentrated solar supercritical water gasification of algal biomass," Applied Energy, Elsevier, vol. 228(C), pages 1669-1682.
    20. Cui, Yunlei & Zhang, Yaning & Cui, Longfei & Xiong, Qingang & Mostafa, Ehab, 2023. "Microwave-assisted fluidized bed reactor pyrolysis of polypropylene plastic for pyrolysis gas production towards a sustainable development," Applied Energy, Elsevier, vol. 342(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223022338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.