IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v161y2020icp386-394.html
   My bibliography  Save this article

Sequential optimization of the geometrical parameters of an OWC device based on the specific wave characteristics

Author

Listed:
  • Hayati, Mohammad
  • Nikseresht, Amir H.
  • Haghighi, Ali Taherian

Abstract

Conventional Wave Energy Converters (WECs) are designed to extract the wave energy from the oceans with the wave power of 20–50 kW-per-meter. If these WECs are used where the wave energy is less than the mentioned values they cannot work in their maximum performance. Therefore it is proposed to optimize the WECs for the average wave power in each place. In this research, an Oscillating Water Column (OWC) is investigated to extract the maximum output power based on the characteristics of the Faroor island waves in the Persian Gulf. The average power of the Persian Gulf Waves is less than 10 kW-per-meter and using a conventional wave energy converter is not efficient. Numerical simulation is performed using ANSYS-Fluent software. In this study, waves are generated using nonlinear second order stokes theory. Also, the k-ω turbulence model and volume of fluid scheme are used for turbulence modeling and interface tracking respectively. Finally, with optimizing each parameter an optimum geometry with an efficiency of 41.5% is obtained to extract the Faroor Island waves’ energy. This study emphasizes on this fact that one should design a new geometry to reach the best performance of the OWC in new wave characteristics.

Suggested Citation

  • Hayati, Mohammad & Nikseresht, Amir H. & Haghighi, Ali Taherian, 2020. "Sequential optimization of the geometrical parameters of an OWC device based on the specific wave characteristics," Renewable Energy, Elsevier, vol. 161(C), pages 386-394.
  • Handle: RePEc:eee:renene:v:161:y:2020:i:c:p:386-394
    DOI: 10.1016/j.renene.2020.07.073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120311496
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.07.073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Teixeira, Paulo R.F. & Davyt, Djavan P. & Didier, Eric & Ramalhais, Rubén, 2013. "Numerical simulation of an oscillating water column device using a code based on Navier–Stokes equations," Energy, Elsevier, vol. 61(C), pages 513-530.
    2. John Ashlin, S. & Sundar, V. & Sannasiraj, S.A., 2016. "Effects of bottom profile of an oscillating water column device on its hydrodynamic characteristics," Renewable Energy, Elsevier, vol. 96(PA), pages 341-353.
    3. Elhanafi, Ahmed & Fleming, Alan & Macfarlane, Gregor & Leong, Zhi, 2016. "Numerical energy balance analysis for an onshore oscillating water column–wave energy converter," Energy, Elsevier, vol. 116(P1), pages 539-557.
    4. Medina-López, E. & Moñino, A. & Bergillos, R.J. & Clavero, M. & Ortega-Sánchez, M., 2019. "Oscillating water column performance under the influence of storm development," Energy, Elsevier, vol. 166(C), pages 765-774.
    5. Kharati-Koopaee, Masoud & Fathi-Kelestani, Arman, 2020. "Assessment of oscillating water column performance: Influence of wave steepness at various chamber lengths and bottom slopes," Renewable Energy, Elsevier, vol. 147(P1), pages 1595-1608.
    6. Viviano, Antonino & Naty, Stefania & Foti, Enrico & Bruce, Tom & Allsop, William & Vicinanza, Diego, 2016. "Large-scale experiments on the behaviour of a generalised Oscillating Water Column under random waves," Renewable Energy, Elsevier, vol. 99(C), pages 875-887.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shahabi-Nejad, Meysam & Nikseresht, Amir H., 2022. "A comprehensive investigation of a hybrid wave energy converter including oscillating water column and horizontal floating cylinder," Energy, Elsevier, vol. 243(C).
    2. Chen, Jing & Wen, Hongjie & Wang, Yongxue & Wang, Guoyu, 2021. "A correlation study of optimal chamber width with the relative front wall draught of onshore OWC device," Energy, Elsevier, vol. 225(C).
    3. Carlo, Lilia & Iuppa, Claudio & Faraci, Carla, 2023. "A numerical-experimental study on the hydrodynamic performance of a U-OWC wave energy converter," Renewable Energy, Elsevier, vol. 203(C), pages 89-101.
    4. Fox, Brooklyn N. & Gomes, Rui P.F. & Gato, Luís M.C., 2021. "Analysis of oscillating-water-column wave energy converter configurations for integration into caisson breakwaters," Applied Energy, Elsevier, vol. 295(C).
    5. Taherian Haghighi, Ali & Nikseresht, Amir H. & Hayati, Mohammad, 2021. "Numerical analysis of hydrodynamic performance of a dual-chamber Oscillating Water Column," Energy, Elsevier, vol. 221(C).
    6. Liu, Zhen & Xu, Chuanli & Zhang, Xiaoxia & Ning, Dezhi, 2023. "Experimental study on an isolated oscillating water column wave energy converting device in oblique waves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    7. Liu, Zhen & Xu, Chuanli & Kim, Kilwon & Li, Ming, 2022. "Experimental study on the overall performance of a model OWC system under the free-spinning mode in irregular waves," Energy, Elsevier, vol. 250(C).
    8. Gurnari, Luana & G.F.Filianoti, Pasquale & M.Camporeale, Sergio, 2022. "Fluid dynamics inside a U-shaped oscillating water column (OWC): 1D vs. 2D CFD model," Renewable Energy, Elsevier, vol. 193(C), pages 687-705.
    9. Trivedi, Kshma & Koley, Santanu, 2023. "Performance of a hybrid wave energy converter device consisting of a piezoelectric plate and oscillating water column device placed over an undulated seabed," Applied Energy, Elsevier, vol. 333(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Jing & Wen, Hongjie & Wang, Yongxue & Wang, Guoyu, 2021. "A correlation study of optimal chamber width with the relative front wall draught of onshore OWC device," Energy, Elsevier, vol. 225(C).
    2. Çelik, Anıl & Altunkaynak, Abdüsselam, 2021. "An in depth experimental investigation into effects of incident wave characteristics front wall opening and PTO damping on the water column displacement and air differential pressure in an OWC chamber," Energy, Elsevier, vol. 230(C).
    3. Mobin Masoomi & Mahdi Yousefifard & Amir Mosavi, 2021. "Efficiency Assessment of an Amended Oscillating Water Column Using OpenFOAM," Sustainability, MDPI, vol. 13(10), pages 1-23, May.
    4. Molina-Salas, A. & Quirós, C. & Gigant, P. & Huertas-Fernández, F. & Clavero, M. & Moñino, A., 2023. "Exergy assessment and sustainability of a simple off-shore oscillating water column device," Energy, Elsevier, vol. 264(C).
    5. Xu, Conghao & Huang, Zhenhua, 2018. "A dual-functional wave-power plant for wave-energy extraction and shore protection: A wave-flume study," Applied Energy, Elsevier, vol. 229(C), pages 963-976.
    6. Liu, Zhengxuan & Zhou, Yuekuan & Yan, Jun & Tostado-Véliz, Marcos, 2023. "Frontier ocean thermal/power and solar PV systems for transformation towards net-zero communities," Energy, Elsevier, vol. 284(C).
    7. Güths, A.K. & Teixeira, P.R.F. & Didier, E., 2022. "A novel geometry of an onshore Oscillating Water Column wave energy converter," Renewable Energy, Elsevier, vol. 201(P1), pages 938-949.
    8. Elhanafi, Ahmed & Fleming, Alan & Macfarlane, Gregor & Leong, Zhi, 2017. "Underwater geometrical impact on the hydrodynamic performance of an offshore oscillating water column–wave energy converter," Renewable Energy, Elsevier, vol. 105(C), pages 209-231.
    9. Kharati-Koopaee, Masoud & Fathi-Kelestani, Arman, 2020. "Assessment of oscillating water column performance: Influence of wave steepness at various chamber lengths and bottom slopes," Renewable Energy, Elsevier, vol. 147(P1), pages 1595-1608.
    10. Taherian Haghighi, Ali & Nikseresht, Amir H. & Hayati, Mohammad, 2021. "Numerical analysis of hydrodynamic performance of a dual-chamber Oscillating Water Column," Energy, Elsevier, vol. 221(C).
    11. Mia, Mohammad Rashed & Zhao, Ming & Wu, Helen & Munir, Adnan, 2022. "Numerical investigation of offshore oscillating water column devices," Renewable Energy, Elsevier, vol. 191(C), pages 380-393.
    12. Louise O’Boyle & Björn Elsäßer & Trevor Whittaker, 2017. "Experimental Measurement of Wave Field Variations around Wave Energy Converter Arrays," Sustainability, MDPI, vol. 9(1), pages 1-16, January.
    13. Elhanafi, Ahmed & Macfarlane, Gregor & Fleming, Alan & Leong, Zhi, 2017. "Scaling and air compressibility effects on a three-dimensional offshore stationary OWC wave energy converter," Applied Energy, Elsevier, vol. 189(C), pages 1-20.
    14. Ching-Piao Tsai & Chun-Han Ko & Ying-Chi Chen, 2018. "Investigation on Performance of a Modified Breakwater-Integrated OWC Wave Energy Converter," Sustainability, MDPI, vol. 10(3), pages 1-20, February.
    15. Stefania Naty & Antonino Viviano & Enrico Foti, 2016. "Wave Energy Exploitation System Integrated in the Coastal Structure of a Mediterranean Port," Sustainability, MDPI, vol. 8(12), pages 1-19, December.
    16. Medina Rodríguez, Ayrton Alfonso & Silva Casarín, Rodolfo & Blanco Ilzarbe, Jesús María, 2022. "The influence of oblique waves on the hydrodynamic efficiency of an onshore OWC wave energy converter," Renewable Energy, Elsevier, vol. 183(C), pages 687-707.
    17. Mohapatra, Piyush & Vijay, K.G. & Bhattacharyya, Anirban & Sahoo, Trilochan, 2023. "Influence of distinct bottom geometries on the hydrodynamic performance of an OWC device," Energy, Elsevier, vol. 277(C).
    18. Shayan Ramezanzadeh & Murat Ozbulut & Mehmet Yildiz, 2022. "A Numerical Investigation of the Energy Efficiency Enhancement of Oscillating Water Column Wave Energy Converter Systems," Energies, MDPI, vol. 15(21), pages 1-20, November.
    19. Liu, Zhen & Xu, Chuanli & Qu, Na & Cui, Ying & Kim, Kilwon, 2020. "Overall performance evaluation of a model-scale OWC wave energy converter," Renewable Energy, Elsevier, vol. 149(C), pages 1325-1338.
    20. Windt, Christian & Davidson, Josh & Ringwood, John V., 2018. "High-fidelity numerical modelling of ocean wave energy systems: A review of computational fluid dynamics-based numerical wave tanks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 610-630.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:161:y:2020:i:c:p:386-394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.