IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v215y2025ics1364032125002503.html
   My bibliography  Save this article

Optimization and machine learning analysis of a small-scale oscillating water column (OWC) in regular waves: A computational study

Author

Listed:
  • Eid, Tarek
  • Hashem, Hamzeh
  • Yetgin, Dilara
  • Alkhaledi, Abdalla
  • Tutar, Mustafa

Abstract

Addressing the global challenge of energy scarcity necessitates innovative solutions like oscillating water columns (OWC), which offer significant potential in renewable energy. This study introduces a conceptual design and optimization of a small-scale OWC. A finite volume method (FVM) based wave modelling approach integrated with a volume of fluid (VOF) method is proposed to model and simulate the two-phase, viscous, time dependent, turbulent flow in a numerical wave flume (NWF) for realistic representation of wave propagation around the OWC model. Once validated against theoretical and experimental data with an error of 0.74 %, the present numerical methodology is extended to comprehensively optimize the OWC model by sampling varying geometric dimensions under different wave flow conditions using Latin Hypercube Sampling (LHS). This approach aims to not only improve efficiency but also to enhance the understanding of how these parameters affect overall performance. This is supported by machine learning analyses, such as feature importance and SHapley Additive exPlanations (SHAP), which facilitate to understand the effect of each input parameter. Key findings include the ratio of chamber height to chamber length (H1/L) exhibiting the greatest impact on OWC efficiency, while the ratio of channel height to channel length (H2/l) showing the least significance. Additionally, the response surface analysis reveals the optimum ranges of the parameters and highlights the necessity of multi-variable optimization utilized in this study. Optimum dimensions result in a primary efficiency of 45 %, while the least efficient is found to be 2 %, emphasizing the critical importance of optimization in increasing OWC efficiency.

Suggested Citation

  • Eid, Tarek & Hashem, Hamzeh & Yetgin, Dilara & Alkhaledi, Abdalla & Tutar, Mustafa, 2025. "Optimization and machine learning analysis of a small-scale oscillating water column (OWC) in regular waves: A computational study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).
  • Handle: RePEc:eee:rensus:v:215:y:2025:i:c:s1364032125002503
    DOI: 10.1016/j.rser.2025.115577
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032125002503
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115577?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Teixeira, Paulo R.F. & Davyt, Djavan P. & Didier, Eric & Ramalhais, Rubén, 2013. "Numerical simulation of an oscillating water column device using a code based on Navier–Stokes equations," Energy, Elsevier, vol. 61(C), pages 513-530.
    2. Hayati, Mohammad & Nikseresht, Amir H. & Haghighi, Ali Taherian, 2020. "Sequential optimization of the geometrical parameters of an OWC device based on the specific wave characteristics," Renewable Energy, Elsevier, vol. 161(C), pages 386-394.
    3. Doyle, Simeon & Aggidis, George A., 2019. "Development of multi-oscillating water columns as wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 75-86.
    4. Cheng, Yong & Fu, Lei & Dai, Saishuai & Collu, Maurizio & Cui, Lin & Yuan, Zhiming & Incecik, Atilla, 2022. "Experimental and numerical analysis of a hybrid WEC-breakwater system combining an oscillating water column and an oscillating buoy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    5. Windt, Christian & Davidson, Josh & Ringwood, John V., 2018. "High-fidelity numerical modelling of ocean wave energy systems: A review of computational fluid dynamics-based numerical wave tanks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 610-630.
    6. Dizadji, Nader & Sajadian, Seyed Ehsan, 2011. "Modeling and optimization of the chamber of OWC system," Energy, Elsevier, vol. 36(5), pages 2360-2366.
    7. Ellabban, Omar & Abu-Rub, Haitham & Blaabjerg, Frede, 2014. "Renewable energy resources: Current status, future prospects and their enabling technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 748-764.
    8. Tunde Aderinto & Hua Li, 2019. "Review on Power Performance and Efficiency of Wave Energy Converters," Energies, MDPI, vol. 12(22), pages 1-24, November.
    9. Çelik, Anıl & Altunkaynak, Abdüsselam, 2019. "Experimental investigations on the performance of a fixed-oscillating water column type wave energy converter," Energy, Elsevier, vol. 188(C).
    10. Shamshirband, Shahaboddin & Keivani, Afram & Mohammadi, Kasra & Lee, Malrey & Hamid, Siti Hafizah Abd & Petkovic, Dalibor, 2016. "Assessing the proficiency of adaptive neuro-fuzzy system to estimate wind power density: Case study of Aligoodarz, Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 429-435.
    11. Shadmani, Alireza & Nikoo, Mohammad Reza & Gandomi, Amir H. & Chen, Mingjie & Nazari, Rouzbeh, 2024. "Advancements in optimizing wave energy converter geometry utilizing metaheuristic algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    12. Contestabile, Pasquale & Crispino, Gaetano & Di Lauro, Enrico & Ferrante, Vincenzo & Gisonni, Corrado & Vicinanza, Diego, 2020. "Overtopping breakwater for wave Energy Conversion: Review of state of art, recent advancements and what lies ahead," Renewable Energy, Elsevier, vol. 147(P1), pages 705-718.
    13. Marco Negri & Stefano Malavasi, 2018. "Wave Energy Harnessing in Shallow Water through Oscillating Bodies," Energies, MDPI, vol. 11(10), pages 1-17, October.
    14. Simonetti, I. & Cappietti, L. & Elsafti, H. & Oumeraci, H., 2017. "Optimization of the geometry and the turbine induced damping for fixed detached and asymmetric OWC devices: A numerical study," Energy, Elsevier, vol. 139(C), pages 1197-1209.
    15. Tutar, Mustafa & Veci, Inaki, 2016. "Performance analysis of a horizontal axis 3-bladed Savonius type wave turbine in an experimental wave flume (EWF)," Renewable Energy, Elsevier, vol. 86(C), pages 8-25.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Ming & Ning, Dezhi, 2024. "A review of numerical methods for studying hydrodynamic performance of oscillating water column (OWC) devices," Renewable Energy, Elsevier, vol. 233(C).
    2. Adriano Silva Bastos & Tâmara Rita Costa de Souza & Dieimys Santos Ribeiro & Mirian de Lourdes Noronha Motta Melo & Carlos Barreira Martinez, 2023. "Wave Energy Generation in Brazil: A Georeferenced Oscillating Water Column Inventory," Energies, MDPI, vol. 16(8), pages 1-24, April.
    3. Mandev, Murat Barış & Altunkaynak, Abdüsselam, 2022. "Advanced efficiency improvement of a sloping wall oscillating water column via a novel streamlined chamber design," Energy, Elsevier, vol. 259(C).
    4. Mohd Afifi Jusoh & Mohd Zamri Ibrahim & Muhamad Zalani Daud & Aliashim Albani & Zulkifli Mohd Yusop, 2019. "Hydraulic Power Take-Off Concepts for Wave Energy Conversion System: A Review," Energies, MDPI, vol. 12(23), pages 1-23, November.
    5. Peymani, Milad & Nikseresht, Amir H. & Bingham, Harry B., 2024. "A 3D numerical investigation of the influence of the geometrical parameters of an I-beam attenuator OWC on its performance at the resonance period," Energy, Elsevier, vol. 286(C).
    6. Li, Hai & Shi, Xiaodan & Kong, Weihua & Kong, Lingji & Hu, Yongli & Wu, Xiaoping & Pan, Hongye & Zhang, Zutao & Pan, Yajia & Yan, Jinyue, 2025. "Advanced wave energy conversion technologies for sustainable and smart sea: A comprehensive review," Renewable Energy, Elsevier, vol. 238(C).
    7. Zhao, Ming & Palmer, Heath & Dhamelia, Vatsal & Wu, Helen, 2024. "Three-dimensional numerical simulation of a cylindrical oscillating water column (OWC) device placed in a wave flume," Renewable Energy, Elsevier, vol. 231(C).
    8. Mandev, Murat Barış & Çelik, Anıl & Altunkaynak, Abdüsselam, 2024. "Maximizing oscillating water column efficiency: The impact of vertical plate and guide vane," Energy, Elsevier, vol. 308(C).
    9. Opoku, F. & Uddin, M.N. & Atkinson, M., 2023. "A review of computational methods for studying oscillating water columns – the Navier-Stokes based equation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    10. Chen, Jing & Wen, Hongjie & Wang, Yongxue & Wang, Guoyu, 2021. "A correlation study of optimal chamber width with the relative front wall draught of onshore OWC device," Energy, Elsevier, vol. 225(C).
    11. Çelik, Anıl & Altunkaynak, Abdüsselam, 2021. "An in depth experimental investigation into effects of incident wave characteristics front wall opening and PTO damping on the water column displacement and air differential pressure in an OWC chamber," Energy, Elsevier, vol. 230(C).
    12. Kharati-Koopaee, Masoud & Fathi-Kelestani, Arman, 2020. "Assessment of oscillating water column performance: Influence of wave steepness at various chamber lengths and bottom slopes," Renewable Energy, Elsevier, vol. 147(P1), pages 1595-1608.
    13. Singh, Uddish & Abdussamie, Nagi & Hore, Jack, 2020. "Hydrodynamic performance of a floating offshore OWC wave energy converter: An experimental study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    14. Calheiros-Cabral, Tomás & Clemente, Daniel & Rosa-Santos, Paulo & Taveira-Pinto, Francisco & Ramos, Victor & Morais, Tiago & Cestaro, Henrique, 2020. "Evaluation of the annual electricity production of a hybrid breakwater-integrated wave energy converter," Energy, Elsevier, vol. 213(C).
    15. A. H. Samitha Weerakoon & Young-Ho Lee & Mohsen Assadi, 2023. "Wave Energy Convertor for Bilateral Offshore Wave Flows: A Computational Fluid Dynamics (CFD) Study," Sustainability, MDPI, vol. 15(9), pages 1-40, April.
    16. Molina-Salas, A. & Clavero, M. & Moñino, A., 2024. "Effect of wind conditions on the performance of an Oscillating Water Column energy converter," Energy, Elsevier, vol. 304(C).
    17. Palmer, Heath & Zhao, Ming & Wu, Helen & Hu, Pan & Dhamelia, Vatsal, 2024. "Comparison between linear and quadratic power take off for a single chamber land-fixed oscillating water column (OWC)," Renewable Energy, Elsevier, vol. 235(C).
    18. Silva, R.N. & Nunes, M.M. & Oliveira, F.L. & Oliveira, T.F. & Brasil, A.C.P. & Pinto, M.S.S., 2023. "Dynamical analysis of a novel hybrid oceanic tidal-wave energy converter system," Energy, Elsevier, vol. 263(PD).
    19. Doyle, Simeon & Aggidis, George A., 2021. "Experimental investigation and performance comparison of a 1 single OWC, array and M-OWC," Renewable Energy, Elsevier, vol. 168(C), pages 365-374.
    20. Kharkeshi, Behrad Alizadeh & Shafaghat, Rouzbeh & Jahanian, Omid & Alamian, Rezvan & Rezanejad, Kourosh, 2022. "Experimental study of an oscillating water column converter to optimize nonlinear PTO using genetic algorithm," Energy, Elsevier, vol. 260(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:215:y:2025:i:c:s1364032125002503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.