IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i14p2219-d1696862.html
   My bibliography  Save this article

Physical–Mathematical Modeling and Simulations for a Feasible Oscillating Water Column Plant

Author

Listed:
  • Fabio Caldarola

    (Department of Environmental Engineering, Università della Calabria, Cubo 42/B, Ponte Bucci, 87036 Arcavacata di Rende, CS, Italy)

  • Manuela Carini

    (Department of Environmental Engineering, Università della Calabria, Cubo 42/B, Ponte Bucci, 87036 Arcavacata di Rende, CS, Italy)

  • Alessandro Costarella

    (Department of Environmental Engineering, Università della Calabria, Cubo 42/B, Ponte Bucci, 87036 Arcavacata di Rende, CS, Italy)

  • Gioia De Raffele

    (Department of Environmental Engineering, Università della Calabria, Cubo 42/B, Ponte Bucci, 87036 Arcavacata di Rende, CS, Italy)

  • Mario Maiolo

    (Department of Environmental Engineering, Università della Calabria, Cubo 42/B, Ponte Bucci, 87036 Arcavacata di Rende, CS, Italy)

Abstract

The focus of this paper is placed on Oscillating Water Column (OWC) systems. The primary aim is to analyze, through both mathematical modeling and numerical simulations, a single module (chamber) of an OWC plant which, in addition to energy production, offers the dual advantage of large-scale integration into port infrastructures or coastal defense structures such as breakwaters, etc. The core challenge lies in optimizing the geometry of the OWC chamber and its associated ducts. A trapezoidal cross-section is adopted, with various front wall inclinations ranging from 90 ° to 45 ° . This geometric parameter significantly affects both the internal compression ratio and the hydrodynamic behavior of incoming and outgoing waves. Certain inclinations revealed increased turbulence and notable interference with waves reflected from the chamber bottom which determined an unexpected drop in efficiency. The optimal performance occurred at an inclination of approximately 55 ° , yielding an efficiency of around 12.8%, because it represents the most advantageous and balanced compromise between counter-trend phenomena. A detailed analysis is carried out on several key parameters for the different configurations (e.g., internal and external wave elevations, crest phase shifts, pressures, hydraulic loads, efficiency, etc.) to reach the most in-depth analysis possible of the complex phenomena that come into play. Lastly, the study also discusses the additional structural and functional benefits of inclined walls over traditional parallelepiped-shaped chambers, both from a structural and construction point of view, and for the possible use for coastal defense.

Suggested Citation

  • Fabio Caldarola & Manuela Carini & Alessandro Costarella & Gioia De Raffele & Mario Maiolo, 2025. "Physical–Mathematical Modeling and Simulations for a Feasible Oscillating Water Column Plant," Mathematics, MDPI, vol. 13(14), pages 1-27, July.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:14:p:2219-:d:1696862
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/14/2219/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/14/2219/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaozhong Ren & Yuxiang Ma, 2015. "Numerical Simulations for Nonlinear Waves Interaction with Multiple Perforated Quasi-Ellipse Caissons," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-14, October.
    2. Hayati, Mohammad & Nikseresht, Amir H. & Haghighi, Ali Taherian, 2020. "Sequential optimization of the geometrical parameters of an OWC device based on the specific wave characteristics," Renewable Energy, Elsevier, vol. 161(C), pages 386-394.
    3. Pelc, Robin & Fujita, Rod M., 2002. "Renewable energy from the ocean," Marine Policy, Elsevier, vol. 26(6), pages 471-479, November.
    4. Moretti, Giacomo & Malara, Giovanni & Scialò, Andrea & Daniele, Luca & Romolo, Alessandra & Vertechy, Rocco & Fontana, Marco & Arena, Felice, 2020. "Modelling and field testing of a breakwater-integrated U-OWC wave energy converter with dielectric elastomer generator," Renewable Energy, Elsevier, vol. 146(C), pages 628-642.
    5. Aitor J. Garrido & Erlantz Otaola & Izaskun Garrido & Jon Lekube & Francisco J. Maseda & Pedro Liria & Julien Mader, 2015. "Mathematical Modeling of Oscillating Water Columns Wave-Structure Interaction in Ocean Energy Plants," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-11, November.
    6. Caldarola, Fabio, 2018. "The Sierpinski curve viewed by numerical computations with infinities and infinitesimals," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 321-328.
    7. Garcia-Teruel, A. & Forehand, D.I.M., 2021. "A review of geometry optimisation of wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    8. Clément, Alain & McCullen, Pat & Falcão, António & Fiorentino, Antonio & Gardner, Fred & Hammarlund, Karin & Lemonis, George & Lewis, Tony & Nielsen, Kim & Petroncini, Simona & Pontes, M. -Teresa & Sc, 2002. "Wave energy in Europe: current status and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(5), pages 405-431, October.
    9. Gunn, Kester & Stock-Williams, Clym, 2012. "Quantifying the global wave power resource," Renewable Energy, Elsevier, vol. 44(C), pages 296-304.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    2. Ding, Zhen-yu & Ning, De-zhi & Mayon, Robert, 2025. "Wave-to-wire model for an oscillating water column wave energy converter," Applied Energy, Elsevier, vol. 377(PC).
    3. Grasberger, Jeff & Yang, Lisheng & Bacelli, Giorgio & Zuo, Lei, 2024. "Control co-design and optimization of oscillating-surge wave energy converter," Renewable Energy, Elsevier, vol. 225(C).
    4. Hashemi, M. Reza & Neill, Simon P., 2014. "The role of tides in shelf-scale simulations of the wave energy resource," Renewable Energy, Elsevier, vol. 69(C), pages 300-310.
    5. Nadège Bouchonneau & Arnaud Coutrey & Vivianne Marie Bruère & Moacyr Araújo & Alex Costa da Silva, 2023. "Finite Element Modeling and Simulation of a Submerged Wave Energy Converter System for Application to Oceanic Islands in Tropical Atlantic," Energies, MDPI, vol. 16(4), pages 1-17, February.
    6. Mota, P. & Pinto, J.P., 2014. "Wave energy potential along the western Portuguese coast," Renewable Energy, Elsevier, vol. 71(C), pages 8-17.
    7. Wilberforce, Tabbi & El Hassan, Zaki & Durrant, A. & Thompson, J. & Soudan, Bassel & Olabi, A.G., 2019. "Overview of ocean power technology," Energy, Elsevier, vol. 175(C), pages 165-181.
    8. Burgaç, Alper & Yavuz, Hakan, 2019. "Fuzzy Logic based hybrid type control implementation of a heaving wave energy converter," Energy, Elsevier, vol. 170(C), pages 1202-1214.
    9. Roche, R.C. & Walker-Springett, K. & Robins, P.E. & Jones, J. & Veneruso, G. & Whitton, T.A. & Piano, M. & Ward, S.L. & Duce, C.E. & Waggitt, J.J. & Walker-Springett, G.R. & Neill, S.P. & Lewis, M.J. , 2016. "Research priorities for assessing potential impacts of emerging marine renewable energy technologies: Insights from developments in Wales (UK)," Renewable Energy, Elsevier, vol. 99(C), pages 1327-1341.
    10. Chongfei Sun & Zirong Luo & Jianzhong Shang & Zhongyue Lu & Yiming Zhu & Guoheng Wu, 2018. "Design and Numerical Analysis of a Novel Counter-Rotating Self-Adaptable Wave Energy Converter Based on CFD Technology," Energies, MDPI, vol. 11(4), pages 1-21, March.
    11. Saadat, Y. & Fernandez, Nelson & Samimi, Alexei & Alam, Mohammad Reza & Shakeri, Mostafa & Ghorbani, Reza, 2016. "Investigating of Helmholtz wave energy converter," Renewable Energy, Elsevier, vol. 87(P1), pages 67-76.
    12. Coe, Ryan G. & Bacelli, Giorgio & Forbush, Dominic, 2021. "A practical approach to wave energy modeling and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    13. Fadaeenejad, M. & Shamsipour, R. & Rokni, S.D. & Gomes, C., 2014. "New approaches in harnessing wave energy: With special attention to small islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 345-354.
    14. Calheiros-Cabral, Tomás & Clemente, Daniel & Rosa-Santos, Paulo & Taveira-Pinto, Francisco & Ramos, Victor & Morais, Tiago & Cestaro, Henrique, 2020. "Evaluation of the annual electricity production of a hybrid breakwater-integrated wave energy converter," Energy, Elsevier, vol. 213(C).
    15. Bozzi, Silvia & Archetti, Renata & Passoni, Giuseppe, 2014. "Wave electricity production in Italian offshore: A preliminary investigation," Renewable Energy, Elsevier, vol. 62(C), pages 407-416.
    16. Sierra, J.P. & González-Marco, D. & Sospedra, J. & Gironella, X. & Mösso, C. & Sánchez-Arcilla, A., 2013. "Wave energy resource assessment in Lanzarote (Spain)," Renewable Energy, Elsevier, vol. 55(C), pages 480-489.
    17. Seyed Abolfazl Mortazavizadeh & Reza Yazdanpanah & David Campos Gaona & Olimpo Anaya-Lara, 2023. "Fault Diagnosis and Condition Monitoring in Wave Energy Converters: A Review," Energies, MDPI, vol. 16(19), pages 1-16, September.
    18. Scialò, A. & Henriques, J.C.C. & Malara, G. & Falcão, A.F.O. & Gato, L.M.C. & Arena, F., 2021. "Power take-off selection for a fixed U-OWC wave power plant in the Mediterranean Sea: The case of Roccella Jonica," Energy, Elsevier, vol. 215(PA).
    19. Zabihian, Farshid & Fung, Alan S., 2011. "Review of marine renewable energies: Case study of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2461-2474, June.
    20. Portilla-Yandún, Jesús & Acero, Wilson Guachamín & Soria, Rafael & Bravo, Jorge & Alvarez, Ricardo & Paredes, Ruben & Arias, Mijail, 2025. "Spectral and Entropy-based Wave Energy resource assessment: A global view, and point analysis at the Galapagos Islands," Renewable Energy, Elsevier, vol. 246(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:14:p:2219-:d:1696862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.