IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v264y2023ics0360544222030286.html
   My bibliography  Save this article

Exergy assessment and sustainability of a simple off-shore oscillating water column device

Author

Listed:
  • Molina-Salas, A.
  • Quirós, C.
  • Gigant, P.
  • Huertas-Fernández, F.
  • Clavero, M.
  • Moñino, A.

Abstract

This paper present a research on the performance efficiency and sustainability of an Oscillating Water Column (OWC) simple off-shore device, accounting for the influence of governing thermodynamic variables (moisture, temperature, pressure) in the compression/expansion polytropic process. The work proposes a simple off-shore OWC experimental set up as the basis of the study. The analysis takes into consideration both gas subsystems inside and outside the OWC, to achieve a better understanding of the conservative nature of entropy system variable, the net exchange balance, the effects on efficiency and exergy destruction, and the interpretation of the OWC as a thermodynamic engine. Results show that, within the context of the set up, moderate wave climate conditions contribute to a better efficiency of the device in terms of output power, providing with a low impact on exergy destruction and high sustainability in terms of renewability index.

Suggested Citation

  • Molina-Salas, A. & Quirós, C. & Gigant, P. & Huertas-Fernández, F. & Clavero, M. & Moñino, A., 2023. "Exergy assessment and sustainability of a simple off-shore oscillating water column device," Energy, Elsevier, vol. 264(C).
  • Handle: RePEc:eee:energy:v:264:y:2023:i:c:s0360544222030286
    DOI: 10.1016/j.energy.2022.126142
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222030286
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126142?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moñino, A. & Quirós, C. & Mengíbar, F. & Medina-Lopez, E. & Clavero, M., 2020. "Thermodynamics of the OWC chamber: Experimental turbine performance under stationary flow," Renewable Energy, Elsevier, vol. 155(C), pages 317-329.
    2. López, I. & Pereiras, B. & Castro, F. & Iglesias, G., 2014. "Optimisation of turbine-induced damping for an OWC wave energy converter using a RANS–VOF numerical model," Applied Energy, Elsevier, vol. 127(C), pages 105-114.
    3. Carballo, R. & Sánchez, M. & Ramos, V. & Fraguela, J.A. & Iglesias, G., 2015. "The intra-annual variability in the performance of wave energy converters: A comparative study in N Galicia (Spain)," Energy, Elsevier, vol. 82(C), pages 138-146.
    4. Teixeira, Paulo R.F. & Davyt, Djavan P. & Didier, Eric & Ramalhais, Rubén, 2013. "Numerical simulation of an oscillating water column device using a code based on Navier–Stokes equations," Energy, Elsevier, vol. 61(C), pages 513-530.
    5. Hitzeroth, Marion & Megerle, Andreas, 2013. "Renewable Energy Projects: Acceptance Risks and Their Management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 576-584.
    6. Luo, Yongyao & Nader, Jean-Roch & Cooper, Paul & Zhu, Song-Ping, 2014. "Nonlinear 2D analysis of the efficiency of fixed Oscillating Water Column wave energy converters," Renewable Energy, Elsevier, vol. 64(C), pages 255-265.
    7. Medina-López, E. & Bergillos, R.J. & Moñino, A. & Clavero, M. & Ortega-Sánchez, M., 2017. "Effects of seabed morphology on oscillating water column wave energy converters," Energy, Elsevier, vol. 135(C), pages 659-673.
    8. Molina, A. & Jiménez-Portaz, M. & Clavero, M. & Moñino, A., 2022. "The effect of turbine characteristics on the thermodynamics and compression process of a simple OWC device," Renewable Energy, Elsevier, vol. 190(C), pages 836-847.
    9. Lopes, Bárbara S. & Gato, Luís M.C. & Falcão, António F.O. & Henriques, João C.C., 2019. "Test results of a novel twin-rotor radial inflow self-rectifying air turbine for OWC wave energy converters," Energy, Elsevier, vol. 170(C), pages 869-879.
    10. Heras-Saizarbitoria, Iñaki & Zamanillo, Ibon & Laskurain, Iker, 2013. "Social acceptance of ocean wave energy: A case study of an OWC shoreline plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 515-524.
    11. Medina-López, E. & Moñino, A. & Borthwick, A.G.L. & Clavero, M., 2017. "Thermodynamics of an OWC containing real gas," Energy, Elsevier, vol. 135(C), pages 709-717.
    12. Medina-López, E. & Moñino, A. & Bergillos, R.J. & Clavero, M. & Ortega-Sánchez, M., 2019. "Oscillating water column performance under the influence of storm development," Energy, Elsevier, vol. 166(C), pages 765-774.
    13. Rezanejad, K. & Bhattacharjee, J. & Guedes Soares, C., 2015. "Analytical and numerical study of dual-chamber oscillating water columns on stepped bottom," Renewable Energy, Elsevier, vol. 75(C), pages 272-282.
    14. Jalón, María L. & Baquerizo, Asunción & Losada, Miguel A., 2016. "Optimization at different time scales for the design and management of an oscillating water column system," Energy, Elsevier, vol. 95(C), pages 110-123.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Molina, A. & Jiménez-Portaz, M. & Clavero, M. & Moñino, A., 2022. "The effect of turbine characteristics on the thermodynamics and compression process of a simple OWC device," Renewable Energy, Elsevier, vol. 190(C), pages 836-847.
    2. Medina-López, E. & Moñino, A. & Bergillos, R.J. & Clavero, M. & Ortega-Sánchez, M., 2019. "Oscillating water column performance under the influence of storm development," Energy, Elsevier, vol. 166(C), pages 765-774.
    3. Moñino, A. & Quirós, C. & Mengíbar, F. & Medina-Lopez, E. & Clavero, M., 2020. "Thermodynamics of the OWC chamber: Experimental turbine performance under stationary flow," Renewable Energy, Elsevier, vol. 155(C), pages 317-329.
    4. Medina-López, E. & Bergillos, R.J. & Moñino, A. & Clavero, M. & Ortega-Sánchez, M., 2017. "Effects of seabed morphology on oscillating water column wave energy converters," Energy, Elsevier, vol. 135(C), pages 659-673.
    5. Ning, De-Zhi & Wang, Rong-Quan & Gou, Ying & Zhao, Ming & Teng, Bin, 2016. "Numerical and experimental investigation of wave dynamics on a land-fixed OWC device," Energy, Elsevier, vol. 115(P1), pages 326-337.
    6. Ning, De-Zhi & Shi, Jin & Zou, Qing-Ping & Teng, Bin, 2015. "Investigation of hydrodynamic performance of an OWC (oscillating water column) wave energy device using a fully nonlinear HOBEM (higher-order boundary element method)," Energy, Elsevier, vol. 83(C), pages 177-188.
    7. Gonçalves, Rafael A.A.C. & Teixeira, Paulo R.F. & Didier, Eric & Torres, Fernando R., 2020. "Numerical analysis of the influence of air compressibility effects on an oscillating water column wave energy converter chamber," Renewable Energy, Elsevier, vol. 153(C), pages 1183-1193.
    8. Falcão, António F.O. & Henriques, João C.C., 2019. "The spring-like air compressibility effect in oscillating-water-column wave energy converters: Review and analyses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 483-498.
    9. Opoku, F. & Uddin, M.N. & Atkinson, M., 2023. "A review of computational methods for studying oscillating water columns – the Navier-Stokes based equation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    10. Ning, De-Zhi & Wang, Rong-Quan & Zou, Qing-Ping & Teng, Bin, 2016. "An experimental investigation of hydrodynamics of a fixed OWC Wave Energy Converter," Applied Energy, Elsevier, vol. 168(C), pages 636-648.
    11. Rezanejad, K. & Gadelho, J.F.M. & Guedes Soares, C., 2019. "Hydrodynamic analysis of an oscillating water column wave energy converter in the stepped bottom condition using CFD," Renewable Energy, Elsevier, vol. 135(C), pages 1241-1259.
    12. Torres, Fernando R. & Teixeira, Paulo R.F. & Didier, Eric, 2018. "A methodology to determine the optimal size of a wells turbine in an oscillating water column device by using coupled hydro-aerodynamic models," Renewable Energy, Elsevier, vol. 121(C), pages 9-18.
    13. Mobin Masoomi & Mahdi Yousefifard & Amir Mosavi, 2021. "Efficiency Assessment of an Amended Oscillating Water Column Using OpenFOAM," Sustainability, MDPI, vol. 13(10), pages 1-23, May.
    14. Elhanafi, Ahmed & Fleming, Alan & Macfarlane, Gregor & Leong, Zhi, 2017. "Underwater geometrical impact on the hydrodynamic performance of an offshore oscillating water column–wave energy converter," Renewable Energy, Elsevier, vol. 105(C), pages 209-231.
    15. Mia, Mohammad Rashed & Zhao, Ming & Wu, Helen & Munir, Adnan, 2022. "Numerical investigation of offshore oscillating water column devices," Renewable Energy, Elsevier, vol. 191(C), pages 380-393.
    16. Elhanafi, Ahmed & Macfarlane, Gregor & Fleming, Alan & Leong, Zhi, 2017. "Scaling and air compressibility effects on a three-dimensional offshore stationary OWC wave energy converter," Applied Energy, Elsevier, vol. 189(C), pages 1-20.
    17. Vyzikas, Thomas & Deshoulières, Samy & Barton, Matthew & Giroux, Olivier & Greaves, Deborah & Simmonds, Dave, 2017. "Experimental investigation of different geometries of fixed oscillating water column devices," Renewable Energy, Elsevier, vol. 104(C), pages 248-258.
    18. Falcão, António F.O. & Henriques, João C.C., 2016. "Oscillating-water-column wave energy converters and air turbines: A review," Renewable Energy, Elsevier, vol. 85(C), pages 1391-1424.
    19. Mohapatra, Piyush & Vijay, K.G. & Bhattacharyya, Anirban & Sahoo, Trilochan, 2023. "Influence of distinct bottom geometries on the hydrodynamic performance of an OWC device," Energy, Elsevier, vol. 277(C).
    20. Trivedi, Kshma & Koley, Santanu, 2023. "Mathematical modeling of oscillating water column wave energy converter devices placed over an undulated seabed in a two-layer fluid system," Renewable Energy, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:264:y:2023:i:c:s0360544222030286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.