IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v148y2020icp103-112.html

Numerical investigation on improvement of energy transfer in solar power satellite

Author

Listed:
  • Meng, Xianlong
  • Du, Kun
  • Bai, Xiaohui
  • Mankins, John C.
  • Liu, Cunliang

Abstract

Solar power satellite (SPS) normally collects sunlight through concentrating solar collectors give to PV cells which convert it to electric power and then transmitted it to the earth by microwave energy. SPS-ALPHA Mark-Ⅱ applies conical structural as the whole frame composed by several thousands of hexagonal “Reflectors and Deployment Modules” (RDM) that enables extremely high modularity and low cost of machining/space transport. SPS-ALPHA system, on the whole, can be treated a dense array concentrated photovoltaic (DA-CPV) system. The blocking shadow effect and cosine effect of ray path exist that make the optical efficiency fluctuate with different tracking angles, resulting the trade-off exists between optical efficiency and irradiance uniformity. The current study aims to find a compromise solution: a high optical efficiency with stable irradiance distribution for effective PV layout design. To meet this target, Ant Colony Optimization (ACO) algorithm combined with dynamic source-target mapping was adopted to find suitable aiming vectors of modular reflectors. The optical transmission characteristics were investigated using Monte-Carlo ray tracing (MCRT) method. Using above method, this article will focus on the effects of tracking conditions, structural and RDM parameters of SPS-ALPHA Mark-Ⅱ thereby provide basic data and reference for engineering constructions in next step.

Suggested Citation

  • Meng, Xianlong & Du, Kun & Bai, Xiaohui & Mankins, John C. & Liu, Cunliang, 2020. "Numerical investigation on improvement of energy transfer in solar power satellite," Renewable Energy, Elsevier, vol. 148(C), pages 103-112.
  • Handle: RePEc:eee:renene:v:148:y:2020:i:c:p:103-112
    DOI: 10.1016/j.renene.2019.11.120
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119318142
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.11.120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Spelling, James & Favrat, Daniel & Martin, Andrew & Augsburger, Germain, 2012. "Thermoeconomic optimization of a combined-cycle solar tower power plant," Energy, Elsevier, vol. 41(1), pages 113-120.
    2. Chong, Kok-Keong & Yew, Tiong-Keat & Wong, Chee-Woon & Tan, Ming-Hui & Tan, Woei-Chong & Lim, Boon-Han, 2017. "Dense-array concentrator photovoltaic prototype using non-imaging dish concentrator and an array of cross compound parabolic concentrators," Applied Energy, Elsevier, vol. 204(C), pages 898-911.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Chaoran & Zhao, Rui & Yu, Kaiping & Lee, Heow Pueh & Liao, Baopeng, 2021. "A quasi-zero-stiffness device capable of vibration isolation and energy harvesting using piezoelectric buckled beams," Energy, Elsevier, vol. 233(C).
    2. Wang, Dongxu & Zhang, Yiqun & Chen, Guangda & Fan, Guanheng & Li, Xintong & Du, Yingchun, 2023. "Analysis of space-based large light concentration reflective surfaces with errors," Renewable Energy, Elsevier, vol. 216(C).
    3. Palma-Heredia, D. & Verdaguer, M. & Molinos-Senante, M. & Poch, M. & Cugueró-Escofet, M.À., 2021. "Optimised blending for anaerobic co-digestion using ant colony approach: Besòs river basin case study," Renewable Energy, Elsevier, vol. 168(C), pages 141-150.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    2. Mahmoudimehr, Javad & Sebghati, Parvin, 2019. "A novel multi-objective Dynamic Programming optimization method: Performance management of a solar thermal power plant as a case study," Energy, Elsevier, vol. 168(C), pages 796-814.
    3. Valencia-Ortega, G. & Levario-Medina, S. & Angulo-Brown, F. & Barranco-Jiménez, M.A., 2023. "Energetic optimization and local stability of heliothermal plant models under three thermo-economic performance regimes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
    4. Zare, V. & Mahmoudi, S.M.S. & Yari, M. & Amidpour, M., 2012. "Thermoeconomic analysis and optimization of an ammonia–water power/cooling cogeneration cycle," Energy, Elsevier, vol. 47(1), pages 271-283.
    5. Sripadmanabhan Indira, Sridhar & Aravind Vaithilingam, Chockalingam & Sivasubramanian, Ramsundar & Chong, Kok-Keong & Narasingamurthi, Kulasekharan & Saidur, R., 2022. "Prototype of a novel hybrid concentrator photovoltaic/thermal and solar thermoelectric generator system for outdoor study," Renewable Energy, Elsevier, vol. 201(P1), pages 224-239.
    6. Amani, Madjid & Ghenaiet, Adel, 2020. "Novel hybridization of solar central receiver system with combined cycle power plant," Energy, Elsevier, vol. 201(C).
    7. Ju, Xing & Pan, Xinyu & Zhang, Zheyang & Xu, Chao & Wei, Gaosheng, 2019. "Thermal and electrical performance of the dense-array concentrating photovoltaic (DA-CPV) system under non-uniform illumination," Applied Energy, Elsevier, vol. 250(C), pages 904-915.
    8. Ayman Temraz & Falah Alobaid & Jerome Link & Ahmed Elweteedy & Bernd Epple, 2021. "Development and Validation of a Dynamic Simulation Model for an Integrated Solar Combined Cycle Power Plant," Energies, MDPI, vol. 14(11), pages 1-23, June.
    9. Kalathakis, Christos & Aretakis, Nikolaos & Roumeliotis, Ioannis & Alexiou, Alexios & Mathioudakis, Konstantinos, 2019. "Simulation models for supporting the solar thermal power plant operator," Energy, Elsevier, vol. 167(C), pages 1065-1073.
    10. Dunham, Marc T. & Iverson, Brian D., 2014. "High-efficiency thermodynamic power cycles for concentrated solar power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 758-770.
    11. Kevin Ellingwood & Seyed Mostafa Safdarnejad & Khalid Rashid & Kody Powell, 2018. "Leveraging Energy Storage in a Solar-Tower and Combined Cycle Hybrid Power Plant," Energies, MDPI, vol. 12(1), pages 1-23, December.
    12. Claudia Toro & Matteo V. Rocco & Emanuela Colombo, 2016. "Exergy and Thermoeconomic Analyses of Central Receiver Concentrated Solar Plants Using Air as Heat Transfer Fluid," Energies, MDPI, vol. 9(11), pages 1-17, October.
    13. Saghafifar, Mohammad & Gadalla, Mohamed, 2016. "Thermo-economic analysis of air bottoming cycle hybridization using heliostat field collector: A comparative analysis," Energy, Elsevier, vol. 112(C), pages 698-714.
    14. Wright, Daniel G. & Dey, Prasanta K. & Brammer, John, 2014. "A barrier and techno-economic analysis of small-scale bCHP (biomass combined heat and power) schemes in the UK," Energy, Elsevier, vol. 71(C), pages 332-345.
    15. Jesús García-Domínguez & J. Daniel Marcos, 2021. "Thermodynamic Analysis and Systematic Comparison of Solar-Heated Trigeneration Systems Based on ORC and Absorption Heat Pump," Energies, MDPI, vol. 14(16), pages 1-20, August.
    16. Cameron, William James & Reddy, K. Srinivas & Mallick, Tapas Kumar, 2022. "Review of high concentration photovoltaic thermal hybrid systems for highly efficient energy cogeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    17. Hai Wang & Jin Huang & Mengjie Song & Yanxin Hu & Yunfeng Wang & Zijian Lu, 2018. "Simulation and Experimental Study on the Optical Performance of a Fixed-Focus Fresnel Lens Solar Concentrator Using Polar-Axis Tracking," Energies, MDPI, vol. 11(4), pages 1-16, April.
    18. Li, Yuanyuan & Yang, Yongping, 2014. "Thermodynamic analysis of a novel integrated solar combined cycle," Applied Energy, Elsevier, vol. 122(C), pages 133-142.
    19. Yuan, Liyuan & Zhu, Qunzhi & Zhang, Tao & Duan, Rui & Zhu, Haitao, 2021. "Performance evaluation of a co-production system of solar thermal power generation and seawater desalination," Renewable Energy, Elsevier, vol. 169(C), pages 1121-1133.
    20. Bushra, Nayab & Hartmann, Timo, 2019. "A review of state-of-the-art reflective two-stage solar concentrators: Technology categorization and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:148:y:2020:i:c:p:103-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.