IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v167y2019icp1065-1073.html
   My bibliography  Save this article

Simulation models for supporting the solar thermal power plant operator

Author

Listed:
  • Kalathakis, Christos
  • Aretakis, Nikolaos
  • Roumeliotis, Ioannis
  • Alexiou, Alexios
  • Mathioudakis, Konstantinos

Abstract

The benefits that may accrue for the operators of Solar Thermal Power Plants by integrating simulators to everyday operation and maintenance management is demonstrated by using a simulation environment allowing steady state and transient modelling. Two representative STPPs are used as test cases, namely a hybrid solar gas turbine plant and a solar steam turbine plant. The plants operation is simulated for different operating modes utilizing annual meteorological data. Component faults that may occur during operation, such as mirror soiling and misalignment are studied. The effects of different operating modes on performance and operability are established and evaluated. The effect of components degradation on performance is assessed, the overall plant performance deterioration is quantified, and the possibility for selecting optimal maintenance planning is discussed.

Suggested Citation

  • Kalathakis, Christos & Aretakis, Nikolaos & Roumeliotis, Ioannis & Alexiou, Alexios & Mathioudakis, Konstantinos, 2019. "Simulation models for supporting the solar thermal power plant operator," Energy, Elsevier, vol. 167(C), pages 1065-1073.
  • Handle: RePEc:eee:energy:v:167:y:2019:i:c:p:1065-1073
    DOI: 10.1016/j.energy.2018.11.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421832245X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.11.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Spelling, James & Favrat, Daniel & Martin, Andrew & Augsburger, Germain, 2012. "Thermoeconomic optimization of a combined-cycle solar tower power plant," Energy, Elsevier, vol. 41(1), pages 113-120.
    2. Aretakis, N. & Roumeliotis, I. & Doumouras, G. & Mathioudakis, K., 2012. "Compressor washing economic analysis and optimization for power generation," Applied Energy, Elsevier, vol. 95(C), pages 77-86.
    3. Sarver, Travis & Al-Qaraghuli, Ali & Kazmerski, Lawrence L., 2013. "A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 698-733.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    2. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "A Review of Renewable Energy Supply and Energy Efficiency Technologies," IZA Discussion Papers 8145, Institute of Labor Economics (IZA).
    3. Juaidi, Adel & Montoya, Francisco G. & Ibrik, Imad H. & Manzano-Agugliaro, Francisco, 2016. "An overview of renewable energy potential in Palestine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 943-960.
    4. Zhang, Minhui & Zhang, Qin & Zhou, Dequn & Wang, Lei, 2021. "Punishment or reward? Strategies of stakeholders in the quality of photovoltaic plants based on evolutionary game analysis in China," Energy, Elsevier, vol. 220(C).
    5. Saidan, Motasem & Albaali, Abdul Ghani & Alasis, Emil & Kaldellis, John K., 2016. "Experimental study on the effect of dust deposition on solar photovoltaic panels in desert environment," Renewable Energy, Elsevier, vol. 92(C), pages 499-505.
    6. Fabiana Lisco & Farwah Bukhari & Soňa Uličná & Kenan Isbilir & Kurt L. Barth & Alan Taylor & John M. Walls, 2020. "Degradation of Hydrophobic, Anti-Soiling Coatings for Solar Module Cover Glass," Energies, MDPI, vol. 13(15), pages 1-15, July.
    7. Griffiths, Steven, 2017. "A review and assessment of energy policy in the Middle East and North Africa region," Energy Policy, Elsevier, vol. 102(C), pages 249-269.
    8. Ilse, Klemens K. & Figgis, Benjamin W. & Naumann, Volker & Hagendorf, Christian & Bagdahn, Jörg, 2018. "Fundamentals of soiling processes on photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 239-254.
    9. Zare, V. & Mahmoudi, S.M.S. & Yari, M. & Amidpour, M., 2012. "Thermoeconomic analysis and optimization of an ammonia–water power/cooling cogeneration cycle," Energy, Elsevier, vol. 47(1), pages 271-283.
    10. Rafi Zahedi & Parisa Ranjbaran & Gevork B. Gharehpetian & Fazel Mohammadi & Roya Ahmadiahangar, 2021. "Cleaning of Floating Photovoltaic Systems: A Critical Review on Approaches from Technical and Economic Perspectives," Energies, MDPI, vol. 14(7), pages 1-25, April.
    11. Amani, Madjid & Ghenaiet, Adel, 2020. "Novel hybridization of solar central receiver system with combined cycle power plant," Energy, Elsevier, vol. 201(C).
    12. Picotti, G. & Borghesani, P. & Cholette, M.E. & Manzolini, G., 2018. "Soiling of solar collectors – Modelling approaches for airborne dust and its interactions with surfaces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2343-2357.
    13. Enaganti, Prasanth K. & Bhattacharjee, Ankur & Ghosh, Aritra & Chanchangi, Yusuf N. & Chakraborty, Chanchal & Mallick, Tapas K. & Goel, Sanket, 2022. "Experimental investigations for dust build-up on low-iron glass exterior and its effects on the performance of solar PV systems," Energy, Elsevier, vol. 239(PC).
    14. Deb, Dipankar & Brahmbhatt, Nisarg L., 2018. "Review of yield increase of solar panels through soiling prevention, and a proposed water-free automated cleaning solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3306-3313.
    15. Chiteka, Kudzanayi & Arora, Rajesh & Sridhara, S.N. & Enweremadu, C.C., 2021. "Influence of irradiance incidence angle and installation configuration on the deposition of dust and dust-shading of a photovoltaic array," Energy, Elsevier, vol. 216(C).
    16. Kevin Ellingwood & Seyed Mostafa Safdarnejad & Khalid Rashid & Kody Powell, 2018. "Leveraging Energy Storage in a Solar-Tower and Combined Cycle Hybrid Power Plant," Energies, MDPI, vol. 12(1), pages 1-23, December.
    17. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    18. Abdulsalam S. Alghamdi & AbuBakr S. Bahaj & Luke S. Blunden & Yue Wu, 2019. "Dust Removal from Solar PV Modules by Automated Cleaning Systems," Energies, MDPI, vol. 12(15), pages 1-21, July.
    19. Abdmouleh, Zeineb & Alammari, Rashid A.M. & Gastli, Adel, 2015. "Recommendations on renewable energy policies for the GCC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1181-1191.
    20. Lucia Cattani & Paolo Cattani & Anna Magrini, 2021. "Photovoltaic Cleaning Optimization: A Simplified Theoretical Approach for Air to Water Generator (AWG) System Employment," Energies, MDPI, vol. 14(14), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:167:y:2019:i:c:p:1065-1073. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.