IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4770-d609242.html
   My bibliography  Save this article

Thermodynamic Analysis and Systematic Comparison of Solar-Heated Trigeneration Systems Based on ORC and Absorption Heat Pump

Author

Listed:
  • Jesús García-Domínguez

    (Department of Energy Engineering, National Distance Education University, UNED, 28040 Madrid, Spain)

  • J. Daniel Marcos

    (Department of Energy Engineering, National Distance Education University, UNED, 28040 Madrid, Spain)

Abstract

Modular and scalable distributed generation solutions as combined cooling, heating and power (CCHP) systems are currently a promising solution for the simultaneous generation of electricity and useful heating and cooling for large buildings or industries. In the present work, a solar-heated trigeneration approach based on different organic Rankine cycle (ORC) layouts and a single-effect H 2 O/LiBr absorption heat pump integrated as a bottoming cycle is analysed from the thermodynamic viewpoint. The main objective of the study is to provide a comprehensive guide for selecting the most suitable CCHP configuration for a solar-heated CCHP system, following a systematic investigation approach. Six alternative CCHP configurations based on single-pressure and dual-pressure ORC layouts, such as simple, recuperated and superheated cycles, and their combinations, and seven organic fluids as working medium are proposed and compared systematically. A field of solar parabolic trough collectors (SPTCs) used as a heat source of the ORC layouts and the absorption heat pump are kept invariant. A comprehensive parametric analysis of the different proposed configurations is carried out for different design operating conditions. Several output parameters, such as energy and exergy efficiency, net electrical power and electrical to heating and cooling ratios are examined. The study reveals that the most efficient CCHP configuration is the single-pressure ORC regenerative recuperated superheated cycle with toluene as a working fluid, which is on average 25% and 8% more efficient than the variants with single-pressure simple cycle and the dual-pressure recuperated superheated cycle, respectively. At nominal design conditions, the best performing CCHP variant presents 163.7% energy efficiency and 12.3% exergy efficiency, while the electricity, cooling and heating productions are 56.2 kW, 223.0 kW and 530.1 kW, respectively.

Suggested Citation

  • Jesús García-Domínguez & J. Daniel Marcos, 2021. "Thermodynamic Analysis and Systematic Comparison of Solar-Heated Trigeneration Systems Based on ORC and Absorption Heat Pump," Energies, MDPI, vol. 14(16), pages 1-20, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4770-:d:609242
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4770/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4770/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Al-Sulaiman, Fahad A. & Hamdullahpur, Feridun & Dincer, Ibrahim, 2012. "Performance assessment of a novel system using parabolic trough solar collectors for combined cooling, heating, and power production," Renewable Energy, Elsevier, vol. 48(C), pages 161-172.
    2. Spelling, James & Favrat, Daniel & Martin, Andrew & Augsburger, Germain, 2012. "Thermoeconomic optimization of a combined-cycle solar tower power plant," Energy, Elsevier, vol. 41(1), pages 113-120.
    3. Al-Sulaiman, Fahad A. & Hamdullahpur, Feridun & Dincer, Ibrahim, 2011. "Performance comparison of three trigeneration systems using organic rankine cycles," Energy, Elsevier, vol. 36(9), pages 5741-5754.
    4. Suleman, F. & Dincer, I. & Agelin-Chaab, M., 2014. "Development of an integrated renewable energy system for multigeneration," Energy, Elsevier, vol. 78(C), pages 196-204.
    5. Bellos, Evangelos & Tzivanidis, Christos, 2018. "Multi-objective optimization of a solar driven trigeneration system," Energy, Elsevier, vol. 149(C), pages 47-62.
    6. Li, Jian & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Liu, Qiang, 2018. "Parametric optimization and thermodynamic performance comparison of single-pressure and dual-pressure evaporation organic Rankine cycles," Applied Energy, Elsevier, vol. 217(C), pages 409-421.
    7. Ana Fernández-Guillamón & Ángel Molina-García & Francisco Vera-García & José A. Almendros-Ibáñez, 2021. "Organic Rankine Cycle Optimization Performance Analysis Based on Super-Heater Pressure: Comparison of Working Fluids," Energies, MDPI, vol. 14(9), pages 1-16, April.
    8. Manente, Giovanni & Lazzaretto, Andrea & Bonamico, Eleonora, 2017. "Design guidelines for the choice between single and dual pressure layouts in organic Rankine cycle (ORC) systems," Energy, Elsevier, vol. 123(C), pages 413-431.
    9. Quoilin, Sylvain & Broek, Martijn Van Den & Declaye, Sébastien & Dewallef, Pierre & Lemort, Vincent, 2013. "Techno-economic survey of Organic Rankine Cycle (ORC) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 168-186.
    10. Muhammad Tauseef Nasir & Michael Chukwuemeka Ekwonu & Yoonseong Park & Javad Abolfazli Esfahani & Kyung Chun Kim, 2021. "Assessment of a District Trigeneration Biomass Powered Double Organic Rankine Cycle as Primed Mover and Supported Cooling," Energies, MDPI, vol. 14(4), pages 1-24, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Modi, Anish & Bühler, Fabian & Andreasen, Jesper Graa & Haglind, Fredrik, 2017. "A review of solar energy based heat and power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1047-1064.
    2. Li, Jian & Peng, Xiayao & Yang, Zhen & Hu, Shuozhuo & Duan, Yuanyuan, 2022. "Design, improvements and applications of dual-pressure evaporation organic Rankine cycles: A review," Applied Energy, Elsevier, vol. 311(C).
    3. Kasaeian, Alibakhsh & Bellos, Evangelos & Shamaeizadeh, Armin & Tzivanidis, Christos, 2020. "Solar-driven polygeneration systems: Recent progress and outlook," Applied Energy, Elsevier, vol. 264(C).
    4. Loni, Reyhaneh & Mahian, Omid & Markides, Christos N. & Bellos, Evangelos & le Roux, Willem G. & Kasaeian, Ailbakhsh & Najafi, Gholamhassan & Rajaee, Fatemeh, 2021. "A review of solar-driven organic Rankine cycles: Recent challenges and future outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Dabwan, Yousef N. & Pei, Gang & Gao, Guangtao & Li, Jing & Feng, Junsheng, 2019. "Performance analysis of integrated linear fresnel reflector with a conventional cooling, heat, and power tri-generation plant," Renewable Energy, Elsevier, vol. 138(C), pages 639-650.
    6. Buonomano, Annamaria & Calise, Francesco & Palombo, Adolfo & Vicidomini, Maria, 2015. "Energy and economic analysis of geothermal–solar trigeneration systems: A case study for a hotel building in Ischia," Applied Energy, Elsevier, vol. 138(C), pages 224-241.
    7. Dabwan, Yousef N. & Gang, Pei & Li, Jing & Gao, Guangtao & Feng, Junsheng, 2018. "Development and assessment of integrating parabolic trough collectors with gas turbine trigeneration system for producing electricity, chilled water, and freshwater," Energy, Elsevier, vol. 162(C), pages 364-379.
    8. Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.
    9. Kang, Lixia & Tang, Jianping & Liu, Yongzhong, 2020. "Optimal design of an organic Rankine cycle system considering the expected variations on heat sources," Energy, Elsevier, vol. 213(C).
    10. Zhou, Yuhong & Li, Shanshan & Sun, Lei & Zhao, Shupeng & Ashraf Talesh, Seyed Saman, 2020. "Optimization and thermodynamic performance analysis of a power generation system based on geothermal flash and dual-pressure evaporation organic Rankine cycles using zeotropic mixtures," Energy, Elsevier, vol. 194(C).
    11. Kang, Lixia & Tang, Jianping & Liu, Yongzhong, 2021. "Optimal design of organic Rankine cycle system for multi-source waste heat recovery involving multi-period operation," Energy, Elsevier, vol. 235(C).
    12. Surendran, Anandu & Seshadri, Satyanarayanan, 2020. "Design and performance analysis of a novel Transcritical Regenerative Series Two stage Organic Rankine Cycle for dual source waste heat recovery," Energy, Elsevier, vol. 203(C).
    13. Jiansheng, Wang & Lide, Su & Qiang, Zhu & Jintao, Niu, 2022. "Numerical investigation on power generation performance of enhanced geothermal system with horizontal well," Applied Energy, Elsevier, vol. 325(C).
    14. Rech, Sergio & Zandarin, Simone & Lazzaretto, Andrea & Frangopoulos, Christos A., 2017. "Design and off-design models of single and two-stage ORC systems on board a LNG carrier for the search of the optimal performance and control strategy," Applied Energy, Elsevier, vol. 204(C), pages 221-241.
    15. Xinglin Yang & Qiang Lei & Junhu Zou & Xiaohui Lu & Zhenzhen Chen, 2023. "Green and Efficient Recovery and Optimization of Waste Heat and LNG Cold Energy in LNG-Powered Ship Engines," Energies, MDPI, vol. 16(24), pages 1-32, December.
    16. Garcia-Saez, Irene & Méndez, Juan & Ortiz, Carlos & Loncar, Drazen & Becerra, José A. & Chacartegui, Ricardo, 2019. "Energy and economic assessment of solar Organic Rankine Cycle for combined heat and power generation in residential applications," Renewable Energy, Elsevier, vol. 140(C), pages 461-476.
    17. Jinke Tao & Huitao Wang & Jianjun Wang & Chaojun Feng, 2022. "Exergoeconomic and Exergoenvironmental Analysis of a Novel Power and Cooling Cogeneration System Based on Organic Rankine Cycle and Ejector Refrigeration Cycle," Energies, MDPI, vol. 15(21), pages 1-23, October.
    18. Li, Jian & Yang, Zhen & Shen, Jun & Duan, Yuanyuan, 2023. "Enhancement effects of adding internal heat exchanger on dual-pressure evaporation organic Rankine cycle," Energy, Elsevier, vol. 265(C).
    19. Yuan Zhao & Chenghao Gao & Chengjun Li & Jie Sun & Chunyan Wang & Qiang Liu & Jun Zhao, 2022. "Energy and Exergy Analyses of Geothermal Organic Rankine Cycles Considering the Effect of Brine Reinjection Temperature," Energies, MDPI, vol. 15(17), pages 1-20, August.
    20. Su, Zixiang & Yang, Liu, 2022. "Peak shaving strategy for renewable hybrid system driven by solar and radiative cooling integrating carbon capture and sewage treatment," Renewable Energy, Elsevier, vol. 197(C), pages 1115-1132.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4770-:d:609242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.