IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip3p2882-2895.html
   My bibliography  Save this article

Experimental development of a kilowatt-scale biomass fired micro – CHP unit based on ORC with rotary vane expander

Author

Listed:
  • Mascuch, Jakub
  • Novotny, Vaclav
  • Vodicka, Vaclav
  • Spale, Jan
  • Zeleny, Zbynek

Abstract

Micro-cogeneration technologies currently available on the market are too expensive and requiring noble and expensive fuels. Also increasing renewables' shares should favour biomass as a cheap local and available fuel providing dispatchable power. We present a renewable solution based on woodchip combustion system coupled with ORC for applications replacing biomass boilers and producing electricity for own system consumption and a little bit extra. This work describes the design methodology as a complex issue from not only thermodynamic and technical perspective, but also economical and legal. Finally, the technical specifications and operational characteristics of the constructed micro-cogeneration ORC biomass fired system which is in a pre-pilot application stage are presented.

Suggested Citation

  • Mascuch, Jakub & Novotny, Vaclav & Vodicka, Vaclav & Spale, Jan & Zeleny, Zbynek, 2020. "Experimental development of a kilowatt-scale biomass fired micro – CHP unit based on ORC with rotary vane expander," Renewable Energy, Elsevier, vol. 147(P3), pages 2882-2895.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p3:p:2882-2895
    DOI: 10.1016/j.renene.2018.08.113
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118310632
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.08.113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maraver, Daniel & Sin, Ana & Royo, Javier & Sebastián, Fernando, 2013. "Assessment of CCHP systems based on biomass combustion for small-scale applications through a review of the technology and analysis of energy efficiency parameters," Applied Energy, Elsevier, vol. 102(C), pages 1303-1313.
    2. Bracco, Roberto & Clemente, Stefano & Micheli, Diego & Reini, Mauro, 2013. "Experimental tests and modelization of a domestic-scale ORC (Organic Rankine Cycle)," Energy, Elsevier, vol. 58(C), pages 107-116.
    3. Vélez, Fredy & Segovia, José J. & Martín, M. Carmen & Antolín, Gregorio & Chejne, Farid & Quijano, Ana, 2012. "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4175-4189.
    4. Wang, Hailei & Peterson, Richard & Harada, Kevin & Miller, Erik & Ingram-Goble, Robbie & Fisher, Luke & Yih, James & Ward, Chris, 2011. "Performance of a combined organic Rankine cycle and vapor compression cycle for heat activated cooling," Energy, Elsevier, vol. 36(1), pages 447-458.
    5. Zheng, N. & Zhao, L. & Wang, X.D. & Tan, Y.T., 2013. "Experimental verification of a rolling-piston expander that applied for low-temperature Organic Rankine Cycle," Applied Energy, Elsevier, vol. 112(C), pages 1265-1274.
    6. Zhou, Naijun & Wang, Xiaoyuan & Chen, Zhuo & Wang, Zhiqi, 2013. "Experimental study on Organic Rankine Cycle for waste heat recovery from low-temperature flue gas," Energy, Elsevier, vol. 55(C), pages 216-225.
    7. Pei, Gang & Li, Jing & Li, Yunzhu & Wang, Dongyue & Ji, Jie, 2011. "Construction and dynamic test of a small-scale organic rankine cycle," Energy, Elsevier, vol. 36(5), pages 3215-3223.
    8. Alanne, Kari & Saari, Arto, 2004. "Sustainable small-scale CHP technologies for buildings: the basis for multi-perspective decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(5), pages 401-431, October.
    9. Kang, Seok Hun, 2012. "Design and experimental study of ORC (organic Rankine cycle) and radial turbine using R245fa working fluid," Energy, Elsevier, vol. 41(1), pages 514-524.
    10. Li, Jing & Pei, Gang & Li, Yunzhu & Wang, Dongyue & Ji, Jie, 2012. "Energetic and exergetic investigation of an organic Rankine cycle at different heat source temperatures," Energy, Elsevier, vol. 38(1), pages 85-95.
    11. Barbieri, Enrico Saverio & Spina, Pier Ruggero & Venturini, Mauro, 2012. "Analysis of innovative micro-CHP systems to meet household energy demands," Applied Energy, Elsevier, vol. 97(C), pages 723-733.
    12. Declaye, Sébastien & Quoilin, Sylvain & Guillaume, Ludovic & Lemort, Vincent, 2013. "Experimental study on an open-drive scroll expander integrated into an ORC (Organic Rankine Cycle) system with R245fa as working fluid," Energy, Elsevier, vol. 55(C), pages 173-183.
    13. Roy, J.P. & Misra, Ashok, 2012. "Parametric optimization and performance analysis of a regenerative Organic Rankine Cycle using R-123 for waste heat recovery," Energy, Elsevier, vol. 39(1), pages 227-235.
    14. Badr, O. & O'Callaghan, P.W. & Probert, S.D., 1985. "Multi-vane expanders: Geometry and vane kinematics," Applied Energy, Elsevier, vol. 19(3), pages 159-182.
    15. Yamamoto, Takahisa & Furuhata, Tomohiko & Arai, Norio & Mori, Koichi, 2001. "Design and testing of the Organic Rankine Cycle," Energy, Elsevier, vol. 26(3), pages 239-251.
    16. Li, Maoqing & Wang, Jiangfeng & He, Weifeng & Gao, Lin & Wang, Bo & Ma, Shaolin & Dai, Yiping, 2013. "Construction and preliminary test of a low-temperature regenerative Organic Rankine Cycle (ORC) using R123," Renewable Energy, Elsevier, vol. 57(C), pages 216-222.
    17. Yamada, Noboru & Watanabe, Masataka & Hoshi, Akira, 2013. "Experiment on pumpless Rankine-type cycle with scroll expander," Energy, Elsevier, vol. 49(C), pages 137-145.
    18. Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carraro, Gianluca & Bori, Viola & Lazzaretto, Andrea & Toniato, Giuseppe & Danieli, Piero, 2020. "Experimental investigation of an innovative biomass-fired micro-ORC system for cogeneration applications," Renewable Energy, Elsevier, vol. 161(C), pages 1226-1243.
    2. Hsieh, Jui-Ching & Chen, Yen-Hsun & Hsieh, Yi-Chi, 2023. "Experimental study of an organic Rankine cycle with a variable-rotational-speed scroll expander at various heat source temperatures," Energy, Elsevier, vol. 270(C).
    3. Dawo, Fabian & Eyerer, Sebastian & Pili, Roberto & Wieland, Christoph & Spliethoff, Hartmut, 2021. "Experimental investigation, model validation and application of twin-screw expanders with different built-in volume ratios," Applied Energy, Elsevier, vol. 282(PA).
    4. Parisa Heidarnejad & Hadi Genceli & Nasim Hashemian & Mustafa Asker & Mohammad Al-Rawi, 2024. "Biomass-Fueled Organic Rankine Cycles: State of the Art and Future Trends," Energies, MDPI, vol. 17(15), pages 1-30, August.
    5. Fabio Fatigati & Marco Di Bartolomeo & Davide Di Battista & Roberto Cipollone, 2020. "Experimental Validation of a New Modeling for the Design Optimization of a Sliding Vane Rotary Expander Operating in an ORC-Based Power Unit," Energies, MDPI, vol. 13(16), pages 1-23, August.
    6. Murthy, Anarghya Ananda & Norris, Stuart & Subiantoro, Alison, 2022. "Experimental investigation of internal leakages and effects of lubricating oil on the performance of a four-intersecting-vane rotary expander," Energy, Elsevier, vol. 238(PB).
    7. Novotny, Vaclav & Spale, Jan & Pavlicko, Jan & Szucs, David J. & Kolovratnik, Michal, 2023. "Experimental development of a lithium bromide absorption power cycle," Renewable Energy, Elsevier, vol. 207(C), pages 321-347.
    8. Naseri, Ali & Moradi, Ramin & Norris, Stuart & Subiantoro, Alison, 2022. "Experimental investigation of a revolving vane expander in a micro-scale organic Rankine cycle system for low-grade waste heat recovery," Energy, Elsevier, vol. 253(C).
    9. Zhang, Hong-Hu & Zhang, Yi-Fan & Feng, Yong-Qiang & Chang, Jen-Chieh & Chang, Chao-Wei & Xi, Huan & Gong, Liang & Hung, Tzu-Chen & Li, Ming-Jia, 2023. "The parametric analysis on the system behaviors with scroll expanders employed in the ORC system: An experimental comparison," Energy, Elsevier, vol. 268(C).
    10. Naseri, Ali & Norris, Stuart & Subiantoro, Alison, 2020. "Experimental investigation of a prototype semi-dry revolving vane expander: Design challenges and performance criteria," Energy, Elsevier, vol. 205(C).
    11. Eduardo A. Pina & Luis M. Serra & Miguel A. Lozano & Adrián Hernández & Ana Lázaro, 2020. "Comparative Analysis and Design of a Solar-Based Parabolic Trough–ORC Cogeneration Plant for a Commercial Center," Energies, MDPI, vol. 13(18), pages 1-29, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Landelle, Arnaud & Tauveron, Nicolas & Haberschill, Philippe & Revellin, Rémi & Colasson, Stéphane, 2017. "Organic Rankine cycle design and performance comparison based on experimental database," Applied Energy, Elsevier, vol. 204(C), pages 1172-1187.
    2. Yamada, Noboru & Tominaga, Yoshihito & Yoshida, Takanori, 2014. "Demonstration of 10-Wp micro organic Rankine cycle generator for low-grade heat recovery," Energy, Elsevier, vol. 78(C), pages 806-813.
    3. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    4. Miao, Zheng & Xu, Jinliang & Zhang, Kai, 2017. "Experimental and modeling investigation of an organic Rankine cycle system based on the scroll expander," Energy, Elsevier, vol. 134(C), pages 35-49.
    5. Peris, Bernardo & Navarro-Esbrí, Joaquín & Molés, Francisco & González, Manuel & Mota-Babiloni, Adrián, 2015. "Experimental characterization of an ORC (organic Rankine cycle) for power and CHP (combined heat and power) applications from low grade heat sources," Energy, Elsevier, vol. 82(C), pages 269-276.
    6. Imran, Muhammad & Usman, Muhammad & Park, Byung-Sik & Lee, Dong-Hyun, 2016. "Volumetric expanders for low grade heat and waste heat recovery applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1090-1109.
    7. Peris, Bernardo & Navarro-Esbrí, Joaquín & Molés, Francisco & Mota-Babiloni, Adrián, 2015. "Experimental study of an ORC (organic Rankine cycle) for low grade waste heat recovery in a ceramic industry," Energy, Elsevier, vol. 85(C), pages 534-542.
    8. Kang, Seok Hun, 2016. "Design and preliminary tests of ORC (organic Rankine cycle) with two-stage radial turbine," Energy, Elsevier, vol. 96(C), pages 142-154.
    9. Ziviani, Davide & Beyene, Asfaw & Venturini, Mauro, 2014. "Advances and challenges in ORC systems modeling for low grade thermal energy recovery," Applied Energy, Elsevier, vol. 121(C), pages 79-95.
    10. Yang, Xufei & Xu, Jinliang & Miao, Zheng & Zou, Jinghuang & Yu, Chao, 2015. "Operation of an organic Rankine cycle dependent on pumping flow rates and expander torques," Energy, Elsevier, vol. 90(P1), pages 864-878.
    11. Cho, Soo-Yong & Cho, Chong-Hyun & Ahn, Kook-Young & Lee, Young Duk, 2014. "A study of the optimal operating conditions in the organic Rankine cycle using a turbo-expander for fluctuations of the available thermal energy," Energy, Elsevier, vol. 64(C), pages 900-911.
    12. Fuhaid Alshammari & Apostolos Karvountzis-Kontakiotis & Apostolos Pesyridis & Muhammad Usman, 2018. "Expander Technologies for Automotive Engine Organic Rankine Cycle Applications," Energies, MDPI, vol. 11(7), pages 1-36, July.
    13. Feng, Yong-qiang & Hung, Tzu-Chen & Su, Ting-Ying & Wang, Shuang & Wang, Qian & Yang, Shih-Cheng & Lin, Jaw-Ren & Lin, Chih-Hung, 2017. "Experimental investigation of a R245fa-based organic Rankine cycle adapting two operation strategies: Stand alone and grid connect," Energy, Elsevier, vol. 141(C), pages 1239-1253.
    14. Zhang, Ye-Qiang & Wu, Yu-Ting & Xia, Guo-Dong & Ma, Chong-Fang & Ji, Wei-Ning & Liu, Shan-Wei & Yang, Kai & Yang, Fu-Bin, 2014. "Development and experimental study on organic Rankine cycle system with single-screw expander for waste heat recovery from exhaust of diesel engine," Energy, Elsevier, vol. 77(C), pages 499-508.
    15. Yu-Ting Wu & Biao Lei & Chong-Fang Ma & Lei Zhao & Jing-Fu Wang & Hang Guo & Yuan-Wei Lu, 2014. "Study on the Characteristics of Expander Power Output Used for Offsetting Pumping Work Consumption in Organic Rankine Cycles," Energies, MDPI, vol. 7(8), pages 1-15, July.
    16. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    17. Cho, Soo-Yong & Cho, Chong-Hyun, 2015. "An experimental study on the organic Rankine cycle to determine as to how efficiently utilize fluctuating thermal energy," Renewable Energy, Elsevier, vol. 80(C), pages 73-79.
    18. Cho, Soo-Yong & Cho, Chong-Hyun & Choi, Sang-Kyu, 2015. "Experiment and cycle analysis on a partially admitted axial-type turbine used in the organic Rankine cycle," Energy, Elsevier, vol. 90(P1), pages 643-651.
    19. Lei, Biao & Wang, Wei & Wu, Yu-Ting & Ma, Chong-Fang & Wang, Jing-Fu & Zhang, Lei & Li, Chuang & Zhao, Ying-Kun & Zhi, Rui-Ping, 2016. "Development and experimental study on a single screw expander integrated into an Organic Rankine Cycle," Energy, Elsevier, vol. 116(P1), pages 43-52.
    20. Lei, Biao & Wu, Yu-Ting & Wang, Wei & Wang, Jing-Fu & Ma, Chong-Fang, 2014. "A study on lubricant oil supply for positive-displacement expanders in small-scale organic Rankine cycles," Energy, Elsevier, vol. 78(C), pages 846-853.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p3:p:2882-2895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.