IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v139y2019icp496-506.html
   My bibliography  Save this article

The impact of spring-neap tidal-stream cycles in tidal energy assessments in the Chilean Inland Sea

Author

Listed:
  • Artal, Osvaldo
  • Pizarro, Oscar
  • Sepúlveda, Héctor H.

Abstract

The Chilean Inland Sea (CIS) has natural conditions for marine tidal energy development. Recent studies show that lunar variability in the tides should be considered, because the practical power generation varies considerably when large differences exist between spring and neap tides. Using a high resolution (∼1 km) 2D depth-averaged numerical model, we investigate the effect of lunar cycle variability in the CIS and this impact on tidal energy evaluation by validating a 30 days simulation. There are two highly energetic areas where currents exceed 2 m/s 50% of the time: the Chacao and Desertores Channels. Both zones are dominated by semi-diurnal tides, and tidal current amplitude shows large changes during spring and neap tides. Due to these changes power density can vary considerably in a period of 2 weeks. In the Chacao Channel, tidal-stream power is four times as large during spring tide (40 kW/m2) compared to neap tide (10 kW/m2). Tidal-stream power is only significant during spring tide in the Desertores Channel (8 kW/m2). This work is a contribution to understanding the tidally driven flows in an inland sea and the importance of considering the variations between spring and neap tides in tidal-stream energy assessment.

Suggested Citation

  • Artal, Osvaldo & Pizarro, Oscar & Sepúlveda, Héctor H., 2019. "The impact of spring-neap tidal-stream cycles in tidal energy assessments in the Chilean Inland Sea," Renewable Energy, Elsevier, vol. 139(C), pages 496-506.
  • Handle: RePEc:eee:renene:v:139:y:2019:i:c:p:496-506
    DOI: 10.1016/j.renene.2019.02.092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119302460
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.02.092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kelly-Richards, Sarah & Silber-Coats, Noah & Crootof, Arica & Tecklin, David & Bauer, Carl, 2017. "Governing the transition to renewable energy: A review of impacts and policy issues in the small hydropower boom," Energy Policy, Elsevier, vol. 101(C), pages 251-264.
    2. Neill, Simon P. & Vögler, Arne & Goward-Brown, Alice J. & Baston, Susana & Lewis, Matthew J. & Gillibrand, Philip A. & Waldman, Simon & Woolf, David K., 2017. "The wave and tidal resource of Scotland," Renewable Energy, Elsevier, vol. 114(PA), pages 3-17.
    3. Neill, Simon P. & Litt, Emmer J. & Couch, Scott J. & Davies, Alan G., 2009. "The impact of tidal stream turbines on large-scale sediment dynamics," Renewable Energy, Elsevier, vol. 34(12), pages 2803-2812.
    4. Robins, Peter E. & Neill, Simon P. & Lewis, Matt J. & Ward, Sophie L., 2015. "Characterising the spatial and temporal variability of the tidal-stream energy resource over the northwest European shelf seas," Applied Energy, Elsevier, vol. 147(C), pages 510-522.
    5. Mediavilla, D.G. & Sepúlveda, H.H., 2016. "Nearshore assessment of wave energy resources in central Chile (2009–2010)," Renewable Energy, Elsevier, vol. 90(C), pages 136-144.
    6. Goward Brown, Alice J. & Neill, Simon P. & Lewis, Matthew J., 2017. "Tidal energy extraction in three-dimensional ocean models," Renewable Energy, Elsevier, vol. 114(PA), pages 244-257.
    7. Bahaj, A.S & Myers, L.E, 2003. "Fundamentals applicable to the utilisation of marine current turbines for energy production," Renewable Energy, Elsevier, vol. 28(14), pages 2205-2211.
    8. Neill, Simon P. & Hashemi, M. Reza & Lewis, Matt J., 2014. "The role of tidal asymmetry in characterizing the tidal energy resource of Orkney," Renewable Energy, Elsevier, vol. 68(C), pages 337-350.
    9. Defne, Zafer & Haas, Kevin A. & Fritz, Hermann M., 2011. "GIS based multi-criteria assessment of tidal stream power potential: A case study for Georgia, USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2310-2321, June.
    10. Evans, P. & Mason-Jones, A. & Wilson, C. & Wooldridge, C. & O'Doherty, T. & O'Doherty, D., 2015. "Constraints on extractable power from energetic tidal straits," Renewable Energy, Elsevier, vol. 81(C), pages 707-722.
    11. Chen, Wei-Bo & Liu, Wen-Cheng & Hsu, Ming-Hsi, 2013. "Modeling assessment of tidal current energy at Kinmen Island, Taiwan," Renewable Energy, Elsevier, vol. 50(C), pages 1073-1082.
    12. Hashemi, M. Reza & Neill, Simon P. & Robins, Peter E. & Davies, Alan G. & Lewis, Matt J., 2015. "Effect of waves on the tidal energy resource at a planned tidal stream array," Renewable Energy, Elsevier, vol. 75(C), pages 626-639.
    13. De Dominicis, Michela & O'Hara Murray, Rory & Wolf, Judith, 2017. "Multi-scale ocean response to a large tidal stream turbine array," Renewable Energy, Elsevier, vol. 114(PB), pages 1160-1179.
    14. Mattar, Cristian & Guzmán-Ibarra, María Cristina, 2017. "A techno-economic assessment of offshore wind energy in Chile," Energy, Elsevier, vol. 133(C), pages 191-205.
    15. Lewis, M. & Neill, S.P. & Robins, P.E. & Hashemi, M.R., 2015. "Resource assessment for future generations of tidal-stream energy arrays," Energy, Elsevier, vol. 83(C), pages 403-415.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    2. Xu, Tongtong & Haas, Kevin A. & Gunawan, Budi, 2023. "Estimating annual energy production from short tidal current records," Renewable Energy, Elsevier, vol. 207(C), pages 105-115.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guillou, Nicolas & Thiébot, Jérôme, 2016. "The impact of seabed rock roughness on tidal stream power extraction," Energy, Elsevier, vol. 112(C), pages 762-773.
    2. Marta-Almeida, Martinho & Cirano, Mauro & Guedes Soares, Carlos & Lessa, Guilherme C., 2017. "A numerical tidal stream energy assessment study for Baía de Todos os Santos, Brazil," Renewable Energy, Elsevier, vol. 107(C), pages 271-287.
    3. Ward, Sophie L. & Robins, Peter E. & Lewis, Matt J. & Iglesias, Gregorio & Hashemi, M. Reza & Neill, Simon P., 2018. "Tidal stream resource characterisation in progressive versus standing wave systems," Applied Energy, Elsevier, vol. 220(C), pages 274-285.
    4. Piano, M. & Neill, S.P. & Lewis, M.J. & Robins, P.E. & Hashemi, M.R. & Davies, A.G. & Ward, S.L. & Roberts, M.J., 2017. "Tidal stream resource assessment uncertainty due to flow asymmetry and turbine yaw misalignment," Renewable Energy, Elsevier, vol. 114(PB), pages 1363-1375.
    5. Chen, Wei-Bo & Liu, Wen-Cheng, 2017. "Assessing the influence of sea level rise on tidal power output and tidal energy dissipation near a channel," Renewable Energy, Elsevier, vol. 101(C), pages 603-616.
    6. Goward Brown, Alice J. & Neill, Simon P. & Lewis, Matthew J., 2017. "Tidal energy extraction in three-dimensional ocean models," Renewable Energy, Elsevier, vol. 114(PA), pages 244-257.
    7. Lewis, Matt & McNaughton, James & Márquez-Dominguez, Concha & Todeschini, Grazia & Togneri, Michael & Masters, Ian & Allmark, Matthew & Stallard, Tim & Neill, Simon & Goward-Brown, Alice & Robins, Pet, 2019. "Power variability of tidal-stream energy and implications for electricity supply," Energy, Elsevier, vol. 183(C), pages 1061-1074.
    8. Guillou, Nicolas & Thiébot, Jérôme & Chapalain, Georges, 2019. "Turbines’ effects on water renewal within a marine tidal stream energy site," Energy, Elsevier, vol. 189(C).
    9. Nicolas Guillou & Georges Chapalain, 2017. "Tidal Turbines’ Layout in a Stream with Asymmetry and Misalignment," Energies, MDPI, vol. 10(11), pages 1-14, November.
    10. Wei-Bo Chen & Hongey Chen & Lee-Yaw Lin & Yi-Chiang Yu, 2017. "Tidal Current Power Resources and Influence of Sea-Level Rise in the Coastal Waters of Kinmen Island, Taiwan," Energies, MDPI, vol. 10(5), pages 1-15, May.
    11. Vazquez, A. & Iglesias, G., 2016. "Capital costs in tidal stream energy projects – A spatial approach," Energy, Elsevier, vol. 107(C), pages 215-226.
    12. Khojasteh, Danial & Chen, Shengyang & Felder, Stefan & Glamore, William & Hashemi, M. Reza & Iglesias, Gregorio, 2022. "Sea level rise changes estuarine tidal stream energy," Energy, Elsevier, vol. 239(PE).
    13. Lewis, M. & Neill, S.P. & Robins, P. & Hashemi, M.R. & Ward, S., 2017. "Characteristics of the velocity profile at tidal-stream energy sites," Renewable Energy, Elsevier, vol. 114(PA), pages 258-272.
    14. Khojasteh, Danial & Lewis, Matthew & Tavakoli, Sasan & Farzadkhoo, Maryam & Felder, Stefan & Iglesias, Gregorio & Glamore, William, 2022. "Sea level rise will change estuarine tidal energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    15. Thiébaut, Maxime & Sentchev, Alexei, 2017. "Asymmetry of tidal currents off the W.Brittany coast and assessment of tidal energy resource around the Ushant Island," Renewable Energy, Elsevier, vol. 105(C), pages 735-747.
    16. María José Suárez-López & Rodolfo Espina-Valdés & Víctor Manuel Fernández Pacheco & Antonio Navarro Manso & Eduardo Blanco-Marigorta & Eduardo Álvarez-Álvarez, 2019. "A Review of Software Tools to Study the Energetic Potential of Tidal Currents," Energies, MDPI, vol. 12(9), pages 1-19, May.
    17. Ian Masters & Alison Williams & T. Nick Croft & Michael Togneri & Matt Edmunds & Enayatollah Zangiabadi & Iain Fairley & Harshinie Karunarathna, 2015. "A Comparison of Numerical Modelling Techniques for Tidal Stream Turbine Analysis," Energies, MDPI, vol. 8(8), pages 1-21, July.
    18. Deng, Guizhong & Zhang, Zhaoru & Li, Ye & Liu, Hailong & Xu, Wentao & Pan, Yulin, 2020. "Prospective of development of large-scale tidal current turbine array: An example numerical investigation of Zhejiang, China," Applied Energy, Elsevier, vol. 264(C).
    19. Neill, Simon P. & Hashemi, M. Reza & Lewis, Matt J., 2016. "Tidal energy leasing and tidal phasing," Renewable Energy, Elsevier, vol. 85(C), pages 580-587.
    20. Evans, P. & Mason-Jones, A. & Wilson, C. & Wooldridge, C. & O'Doherty, T. & O'Doherty, D., 2015. "Constraints on extractable power from energetic tidal straits," Renewable Energy, Elsevier, vol. 81(C), pages 707-722.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:139:y:2019:i:c:p:496-506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.