IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v133y2017icp191-205.html
   My bibliography  Save this article

A techno-economic assessment of offshore wind energy in Chile

Author

Listed:
  • Mattar, Cristian
  • Guzmán-Ibarra, María Cristina

Abstract

Offshore wind energy potential and its technical and economic feasibility were determined in Chile. Wind speed data from ERA-Interim reanalysis 10 m above the sea surface between 1979 and 2014 was used. The capacity factor and performance of the V164–8.0 MW wind generator was also determined. Using this information along with data from other studies, the following economic indicators were calculated: Levelized Cost Of Energy (LCOE), Net Present Value (NPV), Internal Rate of Return (IRR) and Pay-Back (PB). The results show that the area between 45 and 56°S has the highest values in terms of both power density (∼3190 W/m2) and capacity factor (∼70%), as well as the lowest LCOE values (72–100 USD $/MWh). The area between 30 and 32°S was estimated to be the most suitable area for implementing an offshore wind project because of its wind power density (between 700 W/m2 and 900 W/m2), capacity factors between 40% and 60%, LCOE between 100 and 114 USD$/MWh. This work shows how important studying Chile's offshore wind power is for to be used and for removing barriers to current knowledge about this renewable energy and the benefits it would bring to Chile's power array.

Suggested Citation

  • Mattar, Cristian & Guzmán-Ibarra, María Cristina, 2017. "A techno-economic assessment of offshore wind energy in Chile," Energy, Elsevier, vol. 133(C), pages 191-205.
  • Handle: RePEc:eee:energy:v:133:y:2017:i:c:p:191-205
    DOI: 10.1016/j.energy.2017.05.099
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217308551
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.05.099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Assis Tavares, Luiz Filipe & Shadman, Milad & Assad, Luiz Paulo de Freitas & Estefen, Segen F., 2022. "Influence of the WRF model and atmospheric reanalysis on the offshore wind resource potential and cost estimation: A case study for Rio de Janeiro State," Energy, Elsevier, vol. 240(C).
    2. Tu, Qiang & Mo, Jianlei & Liu, Zhuoran & Gong, Chunxu & Fan, Ying, 2021. "Using green finance to counteract the adverse effects of COVID-19 pandemic on renewable energy investment-The case of offshore wind power in China," Energy Policy, Elsevier, vol. 158(C).
    3. Rusu, Eugen & Onea, Florin, 2019. "An assessment of the wind and wave power potential in the island environment," Energy, Elsevier, vol. 175(C), pages 830-846.
    4. Ma, Xiaojuan & Wu, Xinghong & Wu, Yan & Wang, Yufei, 2023. "Energy system design of offshore natural gas hydrates mining platforms considering multi-period floating wind farm optimization and production profile fluctuation," Energy, Elsevier, vol. 265(C).
    5. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2018. "A lifecycle techno-economic model of offshore wind energy for different entry and exit instances," Applied Energy, Elsevier, vol. 221(C), pages 406-424.
    6. Aliashim Albani & Mohd Zamri Ibrahim & Che Mohd Imran Che Taib & Abd Aziz Azlina, 2017. "The Optimal Generation Cost-Based Tariff Rates for Onshore Wind Energy in Malaysia," Energies, MDPI, vol. 10(8), pages 1-16, July.
    7. Wang, Yabo & Liu, Shengchun & Nian, Victor & Li, Xueqiang & Yuan, Jun, 2019. "Life cycle cost-benefit analysis of refrigerant replacement based on experience from a supermarket project," Energy, Elsevier, vol. 187(C).
    8. Boudia, Sidi Mohammed & Santos, João Andrade, 2019. "Assessment of large-scale wind resource features in Algeria," Energy, Elsevier, vol. 189(C).
    9. Li, Ming & Cao, Sunliang & Zhu, Xiaolin & Xu, Yang, 2022. "Techno-economic analysis of the transition towards the large-scale hybrid wind-tidal supported coastal zero-energy communities," Applied Energy, Elsevier, vol. 316(C).
    10. Wang, Jianzhou & Huang, Xiaojia & Li, Qiwei & Ma, Xuejiao, 2018. "Comparison of seven methods for determining the optimal statistical distribution parameters: A case study of wind energy assessment in the large-scale wind farms of China," Energy, Elsevier, vol. 164(C), pages 432-448.
    11. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    12. Nian, Victor & Liu, Yang & Zhong, Sheng, 2019. "Life cycle cost-benefit analysis of offshore wind energy under the climatic conditions in Southeast Asia – Setting the bottom-line for deployment," Applied Energy, Elsevier, vol. 233, pages 1003-1014.
    13. Gualtieri, G., 2022. "Analysing the uncertainties of reanalysis data used for wind resource assessment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    14. Laura Castro-Santos & Maite deCastro & Xurxo Costoya & Almudena Filgueira-Vizoso & Isabel Lamas-Galdo & Americo Ribeiro & João M. Dias & Moncho Gómez-Gesteira, 2021. "Economic Feasibility of Floating Offshore Wind Farms Considering Near Future Wind Resources: Case Study of Iberian Coast and Bay of Biscay," IJERPH, MDPI, vol. 18(5), pages 1-16, March.
    15. Artal, Osvaldo & Pizarro, Oscar & Sepúlveda, Héctor H., 2019. "The impact of spring-neap tidal-stream cycles in tidal energy assessments in the Chilean Inland Sea," Renewable Energy, Elsevier, vol. 139(C), pages 496-506.
    16. Cristian Mattar & Felipe Cabello-Españon & Nicolas G. Alonso-de-Linaje, 2021. "Towards a Future Scenario for Offshore Wind Energy in Chile: Breaking the Paradigm," Sustainability, MDPI, vol. 13(13), pages 1-16, June.
    17. Dhunny, A.Z. & Timmons, D.S. & Allam, Z. & Lollchund, M.R. & Cunden, T.S.M., 2020. "An economic assessment of near-shore wind farm development using a weather research forecast-based genetic algorithm model," Energy, Elsevier, vol. 201(C).
    18. de Assis Tavares, Luiz Filipe & Shadman, Milad & de Freitas Assad, Luiz Paulo & Silva, Corbiniano & Landau, Luiz & Estefen, Segen F., 2020. "Assessment of the offshore wind technical potential for the Brazilian Southeast and South regions," Energy, Elsevier, vol. 196(C).
    19. Vinhoza, Amanda & Schaeffer, Roberto, 2021. "Brazil's offshore wind energy potential assessment based on a Spatial Multi-Criteria Decision Analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    20. Geovanni Hernández Galvez & Daniel Chuck Liévano & Omar Sarracino Martínez & Orlando Lastres Danguillecourt & José Rafael Dorrego Portela & Antonio Trujillo Narcía & Ricardo Saldaña Flores & Liliana P, 2022. "Harnessing Offshore Wind Energy along the Mexican Coastline in the Gulf of Mexico—An Exploratory Study including Sustainability Criteria," Sustainability, MDPI, vol. 14(10), pages 1-26, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:133:y:2017:i:c:p:191-205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.