IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v132y2019icp1348-1359.html
   My bibliography  Save this article

Evaluation of wind and solar energy investments in Texas

Author

Listed:
  • Chang, Byungik
  • Starcher, Ken

Abstract

The primary objective of the project is to evaluate the benefits of wind and solar energy and determine economical investment sites for wind and solar energy in Texas with economic parameters including payback periods. A 50 kW wind turbine system and a 42 kW PV system were used to collect field data. Data analysis enabled yearly energy production and payback period of the two systems.

Suggested Citation

  • Chang, Byungik & Starcher, Ken, 2019. "Evaluation of wind and solar energy investments in Texas," Renewable Energy, Elsevier, vol. 132(C), pages 1348-1359.
  • Handle: RePEc:eee:renene:v:132:y:2019:i:c:p:1348-1359
    DOI: 10.1016/j.renene.2018.09.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118311005
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.09.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marafia, A.-Hamid, 2001. "Feasibility study of photovoltaic technology in Qatar," Renewable Energy, Elsevier, vol. 24(3), pages 565-567.
    2. Khadem, Shafiuzzaman Khan & Hussain, Muhtasham, 2006. "A pre-feasibility study of wind resources in Kutubdia Island, Bangladesh," Renewable Energy, Elsevier, vol. 31(14), pages 2329-2341.
    3. Tomson, Teolan, 2008. "Discrete two-positional tracking of solar collectors," Renewable Energy, Elsevier, vol. 33(3), pages 400-405.
    4. Han, Yinghua & Mays, Ian, 1996. "Feasibility study of wind energy potential in China," Renewable Energy, Elsevier, vol. 9(1), pages 810-814.
    5. Eldin, S.A. Sharaf & Abd-Elhady, M.S. & Kandil, H.A., 2016. "Feasibility of solar tracking systems for PV panels in hot and cold regions," Renewable Energy, Elsevier, vol. 85(C), pages 228-233.
    6. de Araujo Lima, Laerte & Bezerra Filho, Celso Rosendo, 2010. "Wind energy assessment and wind farm simulation in Triunfo – Pernambuco, Brazil," Renewable Energy, Elsevier, vol. 35(12), pages 2705-2713.
    7. Melikoglu, Mehmet, 2013. "Vision 2023: Feasibility analysis of Turkey's renewable energy projection," Renewable Energy, Elsevier, vol. 50(C), pages 570-575.
    8. Lee, Jongsung & Chang, Byungik & Aktas, Can & Gorthala, Ravi, 2016. "Economic feasibility of campus-wide photovoltaic systems in New England," Renewable Energy, Elsevier, vol. 99(C), pages 452-464.
    9. Li, Yuqiang & Liao, Shengming & Rao, Zhenghua & Liu, Gang, 2014. "A dynamic assessment based feasibility study of concentrating solar power in China," Renewable Energy, Elsevier, vol. 69(C), pages 34-42.
    10. Shafiullah, G.M. & Amanullah, M.T.O. & Shawkat Ali, A.B.M. & Jarvis, Dennis & Wolfs, Peter, 2012. "Prospects of renewable energy – a feasibility study in the Australian context," Renewable Energy, Elsevier, vol. 39(1), pages 183-197.
    11. Shi, Wei & Han, Jonghoon & Kim, Changwan & Lee, Daeyong & Shin, Hyunkyoung & Park, Hyunchul, 2015. "Feasibility study of offshore wind turbine substructures for southwest offshore wind farm project in Korea," Renewable Energy, Elsevier, vol. 74(C), pages 406-413.
    12. Elhadidy, M.A. & Shaahid, S.M., 1999. "Feasibility of hybrid (wind + solar) power systems for Dhahran, Saudi Arabia," Renewable Energy, Elsevier, vol. 16(1), pages 970-976.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John Dorrell & Keunjae Lee, 2020. "The Cost of Wind: Negative Economic Effects of Global Wind Energy Development," Energies, MDPI, vol. 13(14), pages 1-25, July.
    2. Moreira, Túlio Marcondes & de Faria, Jackson Geraldo & Vaz-de-Melo, Pedro O.S. & Medeiros-Ribeiro, Gilberto, 2023. "Development and validation of an AI-Driven model for the La Rance tidal barrage: A generalisable case study," Applied Energy, Elsevier, vol. 332(C).
    3. Zhang, Yu & Zhang, Yanjun & Yu, Hai & Li, Jianming & Xie, Yangyang & Lei, Zhihong, 2020. "Geothermal resource potential assessment of Fujian Province, China, based on geographic information system (GIS) -supported models," Renewable Energy, Elsevier, vol. 153(C), pages 564-579.
    4. Ren, Yunxiu & Xu, Chao & Tian, Ziqian & Wang, Tieying & Liao, Zhirong, 2021. "Investigation of the anisotropic thermal properties of the cuboid-like Ca(NO3)2-NaNO3/EG composite," Renewable Energy, Elsevier, vol. 171(C), pages 1303-1312.
    5. Qingpeng Cao & Moses Olabhele Esangbedo & Sijun Bai & Caroline Olufunke Esangbedo, 2019. "Grey SWARA-FUCOM Weighting Method for Contractor Selection MCDM Problem: A Case Study of Floating Solar Panel Energy System Installation," Energies, MDPI, vol. 12(13), pages 1-30, June.
    6. Muhammad Rauf Shaker & Betret S. Eustace & Harish Kumar G. Erukala & Raj G. Patel & Mujtaba B. Mohammed & Mohammed A. Jabri & Kush Desai & Rajesh Goyal & Byungik Chang, 2022. "Analysis of Survey on Barriers to the Implementation of Sustainable Projects," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    7. Sojung Kim & Burchan Aydin & Sumin Kim, 2021. "Simulation Modeling of a Photovoltaic-Green Roof System for Energy Cost Reduction of a Building: Texas Case Study," Energies, MDPI, vol. 14(17), pages 1-13, September.
    8. Youssef Kassem & Hüseyin Çamur & Salman Mohammed Awadh Alhuoti, 2020. "Solar Energy Technology for Northern Cyprus: Assessment, Statistical Analysis, and Feasibility Study," Energies, MDPI, vol. 13(4), pages 1-29, February.
    9. Haris, Muhammad & Hou, Michael Z. & Feng, Wentao & Mehmood, Faisal & Saleem, Ammar bin, 2022. "A regenerative Enhanced Geothermal System for heat and electricity production as well as energy storage," Renewable Energy, Elsevier, vol. 197(C), pages 342-358.
    10. Gabra, Samuel & Miles, John & Scott, Stuart A., 2019. "Techno-economic analysis of stand-alone wind micro-grids, compared with PV and diesel in Africa," Renewable Energy, Elsevier, vol. 143(C), pages 1928-1938.
    11. Piotr Kułyk & Łukasz Augustowski, 2021. "Economic Profitability of a Hybrid Approach to Powering Residual Households from Natural Sources in Two Wind Zones of the Lubuskie Voivodeship in Poland," Energies, MDPI, vol. 14(21), pages 1-15, October.
    12. Shahid Ali & Qingyou Yan & Muhammad Sajjad Hussain & Muhammad Irfan & Munir Ahmad & Asif Razzaq & Vishal Dagar & Cem Işık, 2021. "Evaluating Green Technology Strategies for the Sustainable Development of Solar Power Projects: Evidence from Pakistan," Sustainability, MDPI, vol. 13(23), pages 1-29, November.
    13. Zhang, Yu & Zhang, Yanjun & Zhou, Ling & Lei, Zhihong & Guo, Liangliang & Zhou, Jian, 2022. "Reservoir stimulation design and evaluation of heat exploitation of a two-horizontal-well enhanced geothermal system (EGS) in the Zhacang geothermal field, Northwest China," Renewable Energy, Elsevier, vol. 183(C), pages 330-350.
    14. Ruxu Sheng & Juntian Du & Songqi Liu & Changan Wang & Zidi Wang & Xiaoqian Liu, 2021. "Solar Photovoltaic Investment Changes across China Regions Using a Spatial Shift-Share Analysis," Energies, MDPI, vol. 14(19), pages 1-14, October.
    15. Nalini Dookie & Xsitaaz T. Chadee & Ricardo M. Clarke, 2022. "A Prefeasibility Solar Photovoltaic Tool for Tropical Small Island Developing States," Energies, MDPI, vol. 15(22), pages 1-28, November.
    16. Styliani Karamountzou & Dimitra G. Vagiona, 2023. "Suitability and Sustainability Assessment of Existing Onshore Wind Farms in Greece," Sustainability, MDPI, vol. 15(3), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    2. Sumathi, Vijayan & Jayapragash, R. & Bakshi, Abhinav & Kumar Akella, Praveen, 2017. "Solar tracking methods to maximize PV system output – A review of the methods adopted in recent decade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 130-138.
    3. Moon Keun Kim & Khalid Osman Abdulkadir & Jiying Liu & Joon-Ho Choi & Huiqing Wen, 2021. "Optimal Design Strategy of a Solar Reflector Combining Photovoltaic Panels to Improve Electricity Output: A Case Study in Calgary, Canada," Sustainability, MDPI, vol. 13(11), pages 1-18, May.
    4. Nsengiyumva, Walter & Chen, Shi Guo & Hu, Lihua & Chen, Xueyong, 2018. "Recent advancements and challenges in Solar Tracking Systems (STS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 250-279.
    5. Prasad, Abhnil A. & Taylor, Robert A. & Kay, Merlinde, 2017. "Assessment of solar and wind resource synergy in Australia," Applied Energy, Elsevier, vol. 190(C), pages 354-367.
    6. Chang, Tian Pau, 2009. "The gain of single-axis tracked panel according to extraterrestrial radiation," Applied Energy, Elsevier, vol. 86(7-8), pages 1074-1079, July.
    7. Xiao Liu & Xu Lai & Jin Zou, 2017. "A New MCP Method of Wind Speed Temporal Interpolation and Extrapolation Considering Wind Speed Mixed Uncertainty," Energies, MDPI, vol. 10(8), pages 1-21, August.
    8. Dayal, Kunal K. & Cater, John E. & Kingan, Michael J. & Bellon, Gilles D. & Sharma, Rajnish N., 2021. "Wind resource assessment and energy potential of selected locations in Fiji," Renewable Energy, Elsevier, vol. 172(C), pages 219-237.
    9. Ozcan, Mustafa, 2016. "Estimation of Turkey׳s GHG emissions from electricity generation by fuel types," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 832-840.
    10. D’Adamo, Idiano & Falcone, Pasquale Marcello & Gastaldi, Massimo & Morone, Piergiuseppe, 2020. "The economic viability of photovoltaic systems in public buildings: Evidence from Italy," Energy, Elsevier, vol. 207(C).
    11. Zhao, Zhen-Yu & Chen, Yu-Long & Thomson, John Douglas, 2017. "Levelized cost of energy modeling for concentrated solar power projects: A China study," Energy, Elsevier, vol. 120(C), pages 117-127.
    12. Karimirad, Madjid & Michailides, Constantine, 2015. "V-shaped semisubmersible offshore wind turbine: An alternative concept for offshore wind technology," Renewable Energy, Elsevier, vol. 83(C), pages 126-143.
    13. Vieira, R.G. & Guerra, F.K.O.M.V. & Vale, M.R.B.G. & Araújo, M.M., 2016. "Comparative performance analysis between static solar panels and single-axis tracking system on a hot climate region near to the equator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 672-681.
    14. Kharseh, Mohamad & Al-Khawaja, Mohammed & Hassani, Ferri, 2015. "Utilization of oil wells for electricity generation: Performance and economics," Energy, Elsevier, vol. 90(P1), pages 910-916.
    15. Mudasser, Muhammad & Yiridoe, Emmanuel K. & Corscadden, Kenneth, 2015. "Cost-benefit analysis of grid-connected wind–biogas hybrid energy production, by turbine capacity and site," Renewable Energy, Elsevier, vol. 80(C), pages 573-582.
    16. Yousef Alharbi & Ahmed Darwish & Xiandong Ma, 2023. "A Comprehensive Review of Distributed MPPT for Grid-Tied PV Systems at the Sub-Module Level," Energies, MDPI, vol. 16(14), pages 1-23, July.
    17. Nallapaneni Manoj Kumar & Shauhrat S. Chopra & Aneesh A. Chand & Rajvikram Madurai Elavarasan & G.M. Shafiullah, 2020. "Hybrid Renewable Energy Microgrid for a Residential Community: A Techno-Economic and Environmental Perspective in the Context of the SDG7," Sustainability, MDPI, vol. 12(10), pages 1-30, May.
    18. Nicole E. Statler & Amanda M. Adams & Ted C. Eckmann, 2017. "Optimizing angles of rooftop photovoltaics, ratios of solar to vegetated roof systems, and economic benefits, in Portland, Oregon, USA," Environment Systems and Decisions, Springer, vol. 37(3), pages 320-331, September.
    19. Ajlan, Abdullah & Tan, Chee Wei & Abdilahi, Abdirahman Mohamed, 2017. "Assessment of environmental and economic perspectives for renewable-based hybrid power system in Yemen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 559-570.
    20. Calvert, K. & Pearce, J.M. & Mabee, W.E., 2013. "Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 416-429.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:132:y:2019:i:c:p:1348-1359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.